
Invertible Filter Banks on the 2-Sphere

B.T. Thomas Yeo Wanmei Ou Polina Golland∗

Abstract

Multiscale filtering methods, such as wavelets and steerable pyramids, have been widely used in pro-
cessing and analysis of planar images and promise similar benefits in application to spherical images.
While recent advances have extended some filtering methods to the sphere, many key challenges remain.
This paper focuses on the self-invertibility property of filter banks, particularly desirable if images are
modified in the wavelet domain. More specifically, we develop conditions for invertibility of spheri-
cal filter banks for both continuous and discrete convolution and illustrate how such conditions can be
incorporated into the design of multiscale axis-symmetric wavelets.

1 Introduction
The theories of filter banks, wavelets and overcomplete wavelets, such as steerable pyramids, are well-
established for the Euclidean spaces [5, 15] and have many applications in feature detection, compression
and denoising of images. Extending the theory and methods of filtering to spherical images promises
similar benefits in the fields that give rise to such images, including computer vision [4], computer
graphics [13], astrophysics [19], and geophysics [17]. Our motivation for this work comes from the
representation of brain cortical surfaces as functions on the sphere [7, 8]. Neurobiologists believe that
most of higher cognitive abilities originate from the cerebral cortex, and that neurological growth or
diseases significantly alter the structure of the cortex. Wavelet analysis therefore promises to help the
detection and characterization of important cortical features and how they develop over time.

Similarly to the Euclidean case, filtering in the spherical domain involves decomposing the spher-
ical image into correlation coefficients via convolution with a bank of analysis filters, resulting in the
convolved outputs, as illustrated in Fig. 1 and 2. Once we move to the sphere, Fast Fourier Transform
must be replaced with an alternative efficient method for computing convolutions. An original algorithm
for axis-symmetric convolution kernels on the sphere was derived in [6], and was recently extended to
arbitrary functions [18, 20]. The reconstructed image is obtained by adding the inverse convolutions of
the filtering outputs with the synthesis filters. The filters’ shapes and the relationship among the filters
determine various properties of the filter bank. For example, in the Euclidean wavelets, the analysis
filters are parameterized by dilation, while the steerable pyramids add parametrization through rotation.
Invertible filter banks enable perfect reconstruction of the original signal and therefore provide an equiv-
alent image representation in the wavelet domain. In self-invertible filter banks, the analysis and the
corresponding synthesis filters are identical 1. Self-invertibility is desirable for image manipulation in
the wavelet domain, leading to an intuitive notion that a convolution coefficient corresponds to the con-
tribution of the corresponding filter to the reconstructed signal. Without self-invertibility, the effects of
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1In the Euclidean space, the definition of self-invertibility and convolution requires the synthesis filters be the reflection of the
analysis filters [15], but the standard definition of convolution on the sphere leads to analysis filters that are identical to the synthesis
filters.
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Figure 1: Continuous analysis and synthesis filter bank diagram
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Figure 2: Discrete analysis and synthesis filter bank diagram

nonlinear processing of wavelet coefficients will propagate to locations and frequencies other than those
which were used to compute the coefficients [15]. Our work extends the notion of self-invertibility to
the sphere.

Recently, the general paradigm of linear filtering has been extended to the spherical domain. For
example, the lifting scheme in [13, 14] adopts a non-parametric approach to computing wavelet decom-
position of arbitrary meshes by generalizing the standard 2-scale relation of Euclidean wavelets, enabling
a multi-scale representation of the original mesh (image) with excellent compression performance. How-
ever, the lifting wavelets are not overcomplete, i.e., exactly one wavelet coefficient is created per sample
point, causing difficulties in designing filters for oriented feature detection. A similar problem in the
Euclidean domain led to the invention of overcomplete wavelets, such as steerable pyramids [9, 15].
The group theoretic formulation of overcomplete spherical wavelets [1] is therefore a step forward. In
particular, the stereographic projection of an admissible planar wavelet to the sphere is also admissible
under the group theoretic framework, providing a straightforward framework for the design of analysis
filters for specific features of interest, such as oriented edges [19]. Unfortunately, the synthesis filters are
fully determined by the shapes of the analysis filters, which in general does not lead to self-invertibility.
In contrast, we explicitly derive the conditions for self-invertibility and incorporate them into the filter
design.

In the next section, we introduce the notation used throughout the paper. We present the condi-
tions for the invertibility of filter banks for continuous and discrete spherical convolution in section 3.
In section 4, we further specialize the invertibility conditions and present a procedure for generating
self-invertible, multiscale filter banks on the sphere. We then illustrate the procedure for the case of
axis-symmetric wavelets in section 5 and conclude with discussion of future research and outstanding
challenges in the proposed framework.

2 Spherical Filtering. Notations and Definitions
Let x(θ, φ) ∈ L2(S2) be a square-integrable function on the two-dimensional unit sphere. θ ∈ [0, π] is
the co-latitude, which is the angle between the positive z-axis (north pole) and the vector corresponding
to the point. φ ∈ [0, 2π] is the longitude and is taken to be the angle between the positive x-axis and the
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projection of the point onto the x-y plane. φ is undefined on the north and south poles.
The spherical harmonics Y m

l (θ, φ) form an orthonormal set of basis functions for L2(S2): i.e.

x(θ, φ) =
∞∑

l=0

∑

|m|≤l

xl,mY m
l (θ, φ) (1)

where xl,m’s are the spherical harmonic coefficients of degree l and order m obtained by projecting x
onto Y m

l (θ, φ):

xl,m =

∫

S2

x(θ, φ)Y m∗
l (θ, φ)dΩ (2)

where dΩ = sin(θ)dθdφ. We call Y m
l (θ, φ) a spherical harmonic of degree l and order m. For more

details about spherical harmonics, see Appendix A.
We choose to parameterize rotations on the sphere by the 3-Euler angles, α, β, γ (α ∈ [0, 2π], β ∈

[0, π], γ ∈ [0, 2π]). The rotation operator D(α, β, γ) first rotates the function by γ about the z-axis, then
by β about the y-axis and finally by α about the z-axis. The direction of positive rotation follows the
right-hand screw rule. The three angles specify an element of the rotation group SO(3) and provide a
natural parametrization of convolution on the sphere. The effects of rotation on the harmonic coefficients
of a function is expressible in terms of the so called Wigner-D functions. The Wigner-D functions form
an irreducible representation of the rotation group (see for example [20]).

On the plane, convolution is defined in terms of the inner product between two functions translated
relative to each other, and is parameterized by the amount of translation. On the sphere, it is more
natural to talk about rotation rather than translation, and therefore spherical convolution is parameterized
by rotation. Given a spherical image, x(θ, φ) and a spherical filter, h̃(θ, φ), their spherical convolution

y(α, β, γ) =

∫

S2

[D(α, β, γ)h̃]∗(θ, φ)x(θ, φ)dΩ (3)

is a function of L2(SO(3)), rather than L2(S2). If we consider the center (origin) of a spherical filter
to be initially at the north pole (θ = 0), then intuitively, y(α, β, γ) is obtained by first re-orienting the
spherical filter by a rotation of γ about the z-axis (center still at north pole) and then bringing the center
of the filter to the point (β, α) of the spherical image, and then performing an inner product between
the image and filter. Therefore y(α, β, γ) is the inner product (correlation) of the rotated version of h̃
with x, or the projection coefficient of x onto [D(α, β, γ)h̃]. For axis-symmetric filters h̃(θ, φ) = h̃(θ),
the rotation by γ about z-axis has no effect, i.e., y(α, β, γ) = y(α, β) is a spherical image parametrized
by θ = β, φ = α. Our definition of convolution is identical to that in [18, 20], although [20] calls it
directional correlation. In [6], γ is integrated out, resulting in a spherical image.

The inverse convolution of a spherical filter h(θ, φ) with y(α, β, γ) ∈ L2(SO(3)) produces a spher-
ical image:

x̂h(θ, φ) =

∫

SO(3)

[D(α, β, γ)h](θ, φ)y(α, β, γ)dρ (4)

where the integration is over the Euler angles: dρ = sin(β)dα dβ dγ. We can think of the inverse
convolution the following way. The reconstructed value at a given (θ, φ) is obtained by summing (i.e.
integrating) the contributions of inverse convolution filters, h, centered at (β, α) and oriented by γ, where
the weights of the contributions are given by the convolution outputs (projection coefficients).

When using a filter bank of N analysis-synthesis filter pairs (Fig. 1) the reconstructed signal is ob-
tained from the convolved outputs of the N analysis filters through the inverse convolution with the
corresponding synthesis filters:

x̂(θ, φ) =

N∑

n=1

∫

SO(3)

[D(α, β, γ)hn](θ, φ)yn(α, β, γ)dρ (5)

which is similar to the definition in [1], with integration over scale replaced by summation over the filter
index.
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In the Euclidean case, we typically discretize both the input images and the convolution outputs.
When working on the sphere, we discretize the convolution outputs, but choose to keep the image domain
continuous by working with spherical harmonic coefficients rather than sample values, because this
allows us to exploit efficient algorithms for spherical convolution [18, 20]. Since no uniform sampling
grid exists on the sphere, performing convolution completely by quadrature would be slow, because
under each rotation of the filter relative to the spherical image, we will need to re-sample (or even re-
interpolate) the filter or the image values. We note that continuous representation in the wavelet domain
is possible through series of complex exponentials [18] or Wigner-D functions [20], but manipulating the
series coefficients would be tantamount to simultaneously altering all the wavelet coefficients, defeating
the purpose of the wavelet decomposition.

We therefore sample the output of the continuous convolution y(α, β, γ) to create its discrete counter-
part y(αj , βs, γk), where {αj , βs, γk} define a particular sampling grid. The inverse discrete convolution
definition

x̂h(θ, φ) =
J−1∑

j=0

S−1∑

s=0

K−1∑

k=0

wj,s,k[D(αj , βs, γk)h](θ, φ)y(αj , βs, γk) (6)

includes sampling-dependent quadrature weights wj,s,k, introduced so that the discrete inverse convolu-
tion converges to the continuous inverse convolution as the number of samples increases. This definition
allows for an easy transfer of continuous filtering theory to its discrete analogue. In contrast with the
planar case, wj,s,k are necessary because of the non-uniform measure on the Euler angle β.

The reconstruction of a signal from the sampled convolved outputs of N analysis filters through the
inverse discrete convolution with N synthesis filters is naturally defined as

x̂(θ, φ) =

N∑

n=1

Jn−1∑

j=0

Sn−1∑

s=0

Kn−1∑

k=0

wj,s,k,n[D(αj,n, βs,n, γk,n)hn](θ, φ)yn(αj,n, βs,n, γk,n) (7)

The sampling grid and the quadrature weights now depend on n since different filters in the bank might
use different sampling schemes.

3 Invertibility Conditions
In this section, we do not assume any relationship among the analysis and synthesis filters and provide
general conditions for the invertibility of filter banks. The proofs are provided in the appendices.

Theorem 3.1 (Continuous Invertibility). Let {h̃n, hn}Nn=1 be an analysis-synthesis filter bank. Then
for any spherical image x ∈ L2(S2) and its corresponding reconstructed image x̂,

x̂l,m = xl,m for all (l,m) iff
N∑

n=1

l∑

m′=−l

[
hl,m

′

n

] [
h̃l,m

′

n

]∗
=

2l + 1

8π2
for all l s.t. xl,m 6= 0 (8)

where xl,m and x̂l,m are the spherical harmonic coefficients of the input and reconstructed signals re-
spectively. h̃l,m

′

n and hl,m
′

n are the spherical harmonic coefficients of the n-th analysis and synthesis
filters respectively. The proof is in Appendix B.

This theorem provides the necessary and sufficient condition for the invertibility of filter banks under
continuous convolution. To draw analogies with the Euclidean case, we call

Heh,h(l) =
8π2

2l + 1

N∑

n=1

l∑

m′=−l

[
hl,m

′

n

] [
h̃l,m

′

n

]∗
(9)

the frequency response of the analysis-synthesis filter bank. Theorem 3.1 implies that to guarantee
perfect reconstructions of signals of bandwidth (maximal degree) L, the frequency response of the filter
bank must be equal to 1 for all degrees up to L. On the plane, the frequency response is simply the
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sum of products of the Fourier coefficients of the analysis and the synthesis filters. On the sphere, the
frequency response contains an extra modulating factor that decreases with degree l.

We now define Lehn
(Oehn

) and Lhn
(Ohn

) to be the highest non-zero harmonic degree (order) of h̃n
and hn respectively. The following theorem specifies the sufficient, but not necessary, conditions for the
invertibility of filter banks under discrete spherical convolution.
Theorem 3.2 (Discrete Invertibility). Let {h̃n, hn}

N
n=1 be a filter bank whose frequency response is

equal to 1 up to degree L < ∞ and Oehn
< ∞ and Ohn

< ∞. Let L̃n = min(L,Lehn
) and the sampling

grid and the quadrature weights satisfy

• αj,n = 2πj
eLn+L+1

for j = 0, 1, . . . , (L̃n + L)

• γk,n = 2πk
Oehn

+Ohn+1 for k = 0, 1, . . . , (Oehn
+ Ohn

)

• ws,n and βs,n are the quadrature weights and knots such that
∫ π

0

dlmm′(β)dl
′

mm′(β) sin(β)dβ =

Sn−1∑

s=0

ws,nd
l
mm′(βs,n)d

l′

mm′(βs,n) (10)

for l ≤ L, l′ ≤ L̃n, where dlmm′(β) and dl
′

mm′(β) are the Wigner-d functions.

• wj,s,k,n =
4π2ws,n

(eLn+L+1)(Oehn
+Ohn+1)

Then the filter bank is invertible for any spherical image x ∈ L2(S2) with bandwidth L (i.e., x̂l,m = xl,m

for all 0 ≤ l ≤ L) under the discrete convolution.
We note that invertibility is only guaranteed for degrees up to L rather than for all degrees as in

Theorem 3.1. Additional constraints in this theorem ensure that the number of samples remain finite.
The samples and the weights are picked such that the reconstruction obtained in Eq. (7) is the same as
that in Eq. (5) up to degree L. The proof is found in Appendix C. In Appendix D, we also demonstrate
two sets of quadrature weights and knots that satisfy the conditions of the theorem. The theorem is
sufficient rather than necessary because there can exist other quadrature schemes that enable perfect
reconstruction.

The measures corresponding to α and γ are constant, just like in the Euclidean space. We therefore
assume uniform sampling for these parameters in our work. For discrete planar convolution, it is custom-
ary to have no weights (or rather, the weights are constants). On the sphere, however, the non-uniform
measure on β, sin(β)dβ, makes sampling tricky. If we are simply interested in convergence, then setting
wj,s,k = 2π

J
2π
S sin(βs)

2π
K for uniform samples of α, β, γ corresponds to the Riemann sum of the inte-

gral. Theorem 3.2 states that better quadrature schemes exist that guarantee exact reconstruction up to a
certain bandwidth.

The two theorems imply that if a filter bank with a finite maximal spherical harmonic order is invert-
ible up to degree L under the continuous spherical convolution, it is also invertible up to degree L under
the discrete spherical convolution. Since spherical harmonic coefficients of functions in L2(S2) must
necessarily decay to zero, we can reasonably assume that the constraint is satisfied if we represent the fil-
ter bank with a finite number of coefficients up to an arbitrary pre-specified precision. We will therefore
focus on developing techniques for constructing invertible filter banks for continuous convolution.

Finally, we note that given a set of analysis filters, h̃n, there are in general multiple sets of synthesis
filters that can achieve invertibility. A simple way is by defining the synthesis filters to be hn = Lψh̃n,
where,

[Lψh̃n]
l,m =

{
1

Heh,eh
(l) h̃

l,m
n for Heh,eh(l) > 0

0 otherwise
(11)

Heh,eh(l) is the frequency response defined in Eq. (9). Leh is a frequency modulating operator that normal-
izes the synthesis filters at each degree, such that the combined frequency response of the filter bank is
one for all l with Heh,eh(l) > 0. The filter bank is therefore invertible for signals with non-zero spherical
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harmonic coefficients corresponding to the non-zero values of Heh,eh(l). This operation is similar to the
frame operator in the continuous spherical wavelet transform of [1], where the counterpart of Heh,eh(l) is

given by 8π2

2l+1

∑
|m|≤l

∫∞

0
1
a3 |h̃

l,m
a |2da, replacing the summation over n by the integration over the scale

a, with measure 1
a3 da. For the special case of the analysis filters being dilated versions of each other,

our choice of the synthesis filters is a direct discretization of [1], albeit ignoring the measure of a. The
discretization of the continuous wavelet transform in [1] was actually accomplished in [3]. In general,
the synthesis filters are not related by dilation.

4 Self-Invertible Multi-scale Filter Bank
In multi-scale analysis, we construct the analysis filters through dilation and scaling of a particular tem-
plate h̃(θ, φ), i.e.,

h̃k(θ, φ) = (

k∏

n=1

bn)Dak
h̃(θ, φ) (12)

where bn ≥ 1 and Dak
is the nonlinear dilation operator, with larger n corresponding to smaller a

(narrower filters).
The magnifying factors bn’s are necessary because of the conflict between self-invertibility and di-

lation while preserving norm. Theorem 3.1 implies that the sum of squares of the harmonic coefficients
of a bank of self-invertible filters must increase linearly with degree. But stretching a function while
preserving its norm shifts its harmonic coefficients to the left (harmonic degrees decrease) and magni-
fies them. These extra weights are less surprising once we note that the measure of scale is 1

a3 da, i.e.,
wider filters are assigned smaller weights [1]. In the Euclidean case, with continuous image domain and
discrete wavelet domain, enforcing orthonormality sidesteps this problem since convolution outputs of
narrower filters are sampled more densely.

In this work, we adopt the stereographic dilation operator defined in [1, 3, 19], which involves stere-
ographically projecting the function from the sphere onto the plane, performing the usual dilation oper-
ation on the plane and then projecting the resulting function back onto the sphere. This definition of the
stereographic projection and dilation includes a normalization factor such that the inner product between
functions is conserved:

[Daf ](θ, φ) =
1

a

(
1 + tan2 θ

2

1 + ( 1
a tan θ

2 )2

)
f(2 tan−1(

1

a
tan

θ

2
), φ) (13)

Because of the nonlinear nature of stereographic dilation, extreme dilation of a spherical function will
eventually lead to high frequencies. In practice, we will avoid working in that region, since the dilated
filter no longer looks like the original filter. We also note that our techniques can easily handle other
definitions of scale.

The approach commonly used with planar images of applying a constant filter to a subsampled image
fails here because the sphere is periodic and compact, causing the effective size of the features to stay
constant (relative to the filter) with subsampling. We also note that nonlinear dilation is necessary since
the sphere is compact, hence dilating a spherical function by naively scaling the radial component of the
spherical function, f(θ, φ) → f( θa , φ), leads to undesired “wrap-around” effects.

Unlike the Fourier transform in the Euclidean space, there is no simple closed-form connection
between the spherical harmonic coefficients of a function before and after stereographic dilation. Fortu-
nately, like any reasonable dilation operator, stereographic dilation is distributive over addition. Suppose
the template h̃ is expressible as a linear combination of the basis functions Bi(θ, φ), i.e., h̃(θ, φ) =∑M
i=1 ciB

i(θ, φ) (for the purpose of this paper, we will assume that Bi(θ, φ) are spherical harmonics
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and note that the technique is still applicable if a more suitable basis is found). Therefore,

[Dah̃]l,m =

[
Da

M∑

i=1

ciB
i

]l,m
=

M∑

i=1

ci[DaB
i]l,m (14)

yielding the harmonic coefficients of the analysis filter at another scale (before accounting for bn’s). This
is useful since the invertibility condition in Eq. (8) was expressed in terms of the harmonic coefficients
of the filters. We can therefore decide on a set of scales {an}

N
n=1 and create a table of spherical har-

monic coefficients of the dilated basis functions. Eq. (14) allows us to determine the spherical harmonic
coefficients of the dilated filters at each relative scale given ci’s and bn’s.

After fixing the set of basis functions {Bi} and the set of scales {an}, we now pose an optimization
problem to determine ci’s and bn’s. Similarly to the filter design in Euclidean space, the objective
function should be application dependent, and could for example be a function of the frequency response.
To guarantee self-invertibility, we assume that the analysis and synthesis filters are identical and optimize
the cost function under the invertibility constraints of Eq. (8). Since we cannot have more constraints
than variables, self-invertibility cannot be achieved for more degrees than the number of basis functions
and scales.

In the experiments reported in the next section, we find the quadratic penalty method effective in solv-
ing this optimization problem with non-convex constraints. This involves incorporating the constraints
in the objective function and solving the resulting unconstrained optimization problem using Newton’s
method. The procedure is repeated while increasing the weights of the constraints and using the solution
corresponding to the previous weights as the starting point, until convergence to a local minimum of the
original cost function.

5 Experiments
In this section, we perform the optimization problem formulated in the previous section. The experiments
involve axis-symmetric filters only. Throughout this section, we will limit our set of basis functions to be
the first hundred spherical harmonics of order 0, since spherical harmonic coefficients of axis-symmetric
functions are zero for orders not equal 0.

We use the free software, S2kit [10], to create a table of the spherical harmonic coefficients of DaY
0
l

for l = 0, · · · , 99. We find the first 600 order 0 harmonics of each dilated filter (a dilated axis-symmetric
function remains axis-symmetric). As mentioned before, extreme dilation and shrinking of spherical
harmonics can result in high frequencies. We find that for a = 4 and a = 0.25, [DaY

0
99]

599,0 < 10−7.
We sample uniformly (on the logarithmic scale) the intermediate scales, resulting in a table for an = 2−

n
3

for n = −6,−5, · · · , 5, 6, with a = 1 corresponding to the undilated spherical harmonics. We note that
we might not be using the entire table for the experiments below.

Since our filters are axis-symmetric, we can use the fast spherical convolution [6] to compute forward
convolution. We quote the results here for completeness:

[y(α, β)]l,m =

√
4π

(2l + 1)
xl,mh̃l,0∗ (15)

There is an offset of 2π from [6] because their definition of forward convolution includes integrating
out γ. We will show in Appendix E that we can use almost the same formula to calculate the inverse
convolution of y(α, β) with an axis-symmetric filter h(θ, φ):

[x̂(θ, φ)]l,m = 2π

√
4π

(2l + 1)
yl,mhl,0 (16)

7



0

5
x 10−3

0

0.01

0

0.1

0.2

50 100 150 200 250
0

0.5

degree

(a) Experiment 1

0

5
x 10−3

0
5

x 10−3

0

0.05

50 100 150 200 250
0

0.5

degree

(b) Experiment 2

0

5
x 10−3

0
5

x 10−3

0

0.05

0
0.1
0.2

100 200 300 400
0

0.5

degree

(c) Experiment 3

0

5
x 10−3

0
5

x 10−3

0
0.01
0.02

0
0.1
0.2

100 200 300 400
0

0.5

degree

(d) Experiment 4

Figure 3: Frequency responses of lowpass filters found by optimization procedure in four experiments of section 5.1.
Self-invertibility enforced from degree 0 to 69 for all four experiments. Objective function minimizes first derivatives
of frequency responses at all scales. (a) Scales a = {4, 2, 1, 0.5}. (b) Scales a = {4, 2, 1, 0.5}, objective function
also minimizes frequency response for degree 80 to 99 at a = 1. (c) Scales a = {4, 2, 1, 0.5, 0.25}. (d) Scales
a = {4, 2, 1, 0.5, 0.25}, objective function also minimizes frequency response for degree 80 to 99 at a = 1. Note the
different horizontal and vertical scales in the graphs

8



100 300 500200 400
0  

0.5

1

degree

(a) Lowpass Combined Responses (b) BW = 540 (c) BW = 70

Figure 4: (a) Combined frequency responses of the lowpass filters found in the four experiments of section 5.1. Note
that the colors correspond to those in Fig. 3 (b) World elevation map, bandwidth = 540. (c) Truncated world elevation
map, bandwidth = 70.

5.1 Self-Invertible Lowpass Filters
In this subsection, we would like to derive an objective function that determines a set of lowpass filters.
Ideally, we would like the frequency responses of the lowpass filters to be flat up to a certain degree
and then smoothly drop down to zero. Since we only use the first 100 harmonics as our basis, the
frequency response of h̃a=1(θ, φ) will be zero for all degrees higher than 99. Setting our objective
function to penalize first derivatives of the frequency responses of all the filters will thus result in an
almost flat response followed by a gentle slope down to 0 at degree 100 for a = 1. The solution will
not be degenerate (i.e. completely zero) because we enforce self-invertibility from degree 0 to 69 (70
constraints from Equation (8) for l = 0, 1, · · · , 69).

We performed four experiments, using different sets of scales (a = {4, 2, 1, 1/2} and
a = {4, 2, 1, 1/2, 1/4}) and different penalty functions on the frequency responses of the filter bank for
degrees between 80 and 100 (from not penalizing at all to imposing quadratic penalty on non-zero fre-
quency responses). The frequency responses of the individual filters found in each experiment are shown
in Fig. 3. Fig. 4(a) shows the combined frequency responses of the filter banks from each experiment.
Note that an additional penalty term onside the invertibility range leads to a shaper cutoff (green and
blue). The combined frequency responses of the filters from the 5-scales experiments also cover a much
wider range of harmonics than the self-invertibility range (blue and red). Incorporating smaller scales
a leads to frequency responses that are further beyond the region of invertibility. Including narrower
filters thus only makes sense if we increase the range of invertibility (by increasing the number of basis
functions).

We prefer the filters of the experiment whose combined response is plotted in green due to its sharpest
cutoff. Fig. 5 displays the filters as spherical functions. The bright spot corresponds to the north pole.
Since the filters are axis-symmetric, we can also plot the filters as functions of θ (see Fig. 6).

Fig. 7 illustrates application of these filters to a spherical image of an elevation map of the world
of bandwidth 540 (Fig. 4(b)). The reconstruction performed using this filter bank is an accurate recon-
struction of the original world elevation map truncated at bandwidth 70 (Fig. 4(c)), with the maximum
absolute difference on the order of 10−7. Similarly to the residual lowpass branch in the canonical
wavelet analysis, in this experiment, we require a residual highpass filter that complements the frequency
response for degrees 70 and above.
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(a) a = 4 (b) a = 2 (c) a = 1 (d) a = 0.5

Figure 5: Plot of the lowpass filters found in Experiment 2 of section 5.1 (Fig. 3(b)) as spherical images.
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Figure 6: Plot of the lowpass filters found in Experiment 2 of section 5.1 (Fig. 3(b)) as functions of θ.

(a) a = 4 (b) a = 2 (c) a = 1 (d) a = 0.5

Figure 7: Convolution outputs between the set of lowpass filters in experiment 2 of section 5.1 (Fig. 3(b)) and world
elevation map of bandwidth 540 degrees.

10



10 20 30
0   

0.05

0.025

a=22

10 20 30
0   

0.07

0.04

a=25/3

20 40
0

0.15

0.07

a=24/3

20 40
0

0.3

0.15

a=2

20 40 60
0

0.15

0.3

a=22/3

20 40 60
0

0.1

0.2

a=21/3

50 100
0

0.07

0.15
a=1

20 60 100
0

0.15

0.3
a=2−1/3

50 100 150
0

0.2

0.4

a=2−2/3

100 200
0

0.5

0.25

a=1/2

Figure 8: Frequency responses of the bandpass filters found by our optimization procedure in the three experiments
of section 5.2. We consider the scales a = {2−

k
3 }, for k = −6,−5, · · · , 2, 3. Red: penalize frequency response that

deviates from 0 for degree 80 to 99 and degree 0 to 19 at a = 1, while enforcing invertibility for degree 20 to 69. Blue:
penalize frequency response that deviates from 0 for degree 80 to 99 and degree 0 to 19 at a = 1, while enforcing
invertibility for degree 30 to 69. Black: penalize frequency response that deviates from 0 for degree 80 to 99 and
degree 0 to 24 at a = 1, while enforcing invertibility from degree 24 to 69. Note the different horizontal and vertical
scales in the graphs.

5.2 Self-Invertible Bandpass Filters
To achieve self-invertible bandpass filters, we use the same objective function as before. As noted
previously, the frequency response at a = 1 will be zero for degree at least 100. If we also penalize
the first few coefficients of the filter corresponding to a = 1, this means that the frequency response of
the filter at a = 1 will be zeros at both ends. To satisfy the self-invertibility conditions, the solution
will not be degenerate, i.e., it will not be completely zero, but must instead rise to a peak somewhere
in the middle. The original conditions of minimizing first derivatives at all scales force the filters to be
relatively smooth and reduce ringing. In addition, we relax invertibility for the first few degrees of the
filter bank to make the optimization problem easier because of the additional penalties on the first few
coefficients in the objective function.

We perform three experiments. In all three experiments, we consider the scales a = {2− k
3 }, for

k = −6,−5, · · · , 2, 3. We stop at 3 because incorporating narrower filters only lead to frequency
responses that are way outside the region of invertibility. In the first experiment, we enforce invertibility
for degree 20 to 69, while penalizing frequency response that deviates from 0 for degree 80 to 99 and
degree 0 to 19 at a = 1. In the second experiment, we enforce invertibility for degree 30 to 69, while
penalizing frequency response that deviates from 0 for degree 80 to 99 and degree 0 to 19 at a = 1.
Finally, in the third experiment, we enforce invertibility from degree 24 to 69, while penalizing frequency
response that deviates from 0 for degree 80 to 99 and degree 0 to 24 at a = 1.

The frequency responses of the filters found by the optimization procedures are shown in Fig. 8. Red
corresponds to the first experiment, blue corresponds to the second experiment and black corresponds
to the third experiment. As shown in the graphs, filters become narrower as we enforce invertibility
over a wider range of degrees and as we increase the number of leading coefficients of a = 1 being
penalized for not being 0. We prefer the filters from the first experiment (red) because their responses
are the sharpest. Fig. 9 shows the results of applying the bandpass filters from the first experiment to
the world elevation map of bandwidth 540. Only the convolution outputs corresponding to the scales,
a = {4, 2, 1, 0.5}, are shown.

In this case, we require a residual lowpass filter in addition to a residual highpass filter to ensure that
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(a) a = 4 (b) a = 2 (c) a = 1 (d) a = 0.5

Figure 9: Convolution outputs between the bandpass filters (red lines in figure 8, first experiment of section 5.2) and
world elevation map of bandwidth 540 degrees. Only scales a = {4, 2, 1, 0.5} are shown.

the resultant response of the combined bandpass, lowpass and highpass filters is self-invertible up to a
certain degree.

6 Conclusion
In this paper, we derive the necessary and sufficient conditions for a bank of filters to achieve perfect
reconstruction in the continuous case. We then discretize the results using quadrature, but the condi-
tions are now only sufficient rather than necessary. We present a procedure for obtaining self-invertible
wavelets. We demonstrate the procedure with experiments, obtaining self-invertible lowpass and band-
pass axis-symmetric wavelets.

Although stereographic dilation has many advantages [1], nonlinear dilation of functions on the
sphere remains hard to work with. While we circumvent the problem by using the distributive property
of stereographic dilation, the harmonic coefficients table can take up a substantial amount of space.
More efficient methods are therefore needed. Perhaps it is also possible to formulate other definitions of
dilation that fit better into the analytical framework.

So far, we have only demonstrated the use of our procedures for axis-symmetric wavelets. We plan
to extend the approach to axis-asymmetric filters that detect oriented features at multiple scales. A
promising approach is to develop an appropriate objective function for use in our optimization procedure.
An alternate approach is to leverage upon the bandpass axis-symmetric wavelets which we have already
found. Finally, we would like to reformulate the magnifying factors bn’s in a more natural fashion that
reflects the measure of scale.

This paper introduces theoretic results on invertibility and represents a step towards creation of gen-
eral self-invertible multiscale filter banks on the sphere. Steerable pyramids have been useful for feature
detection and characterization in planar images, and we are optimistic that future work will lead to sim-
ilar applications on the sphere.
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The authors would like to thank Marshall Tappen for discussion on optimization procedures, Bill Free-
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serving dilations in Euclidean wavelets.
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A Spherical Harmonics Basics

A.1 Associated Legendre Polynomials
For m ≥ 0 and |x| < 1,

Pm
l (x) =

(−1)m

2ll!
(1 − x2)m/2

dl+m

dxl+m
(x2 − 1)l (17)

P−m
l (x) = (−1)m

(l − m)!

(l + m)!
Pm
l (x) (18)

A.2 Spherical Harmonics
For a given degree l ≥ 0 and order |m| ≤ l, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π

Y m
l (θ, φ) =

√
2l + 1

4π

(l − m)!

(l + m)!
Pm
l (cos θ)eimφ (19)

Therefore, for l ≥ m ≥ 0, we have,

Y m
l (θ, φ) =

√
2l + 1

4π

(l − m)!

(l + m)!

(−1)m

2ll!
(1 − cos2 θ)m/2

dl+m

dxl+m
(x2 − 1)l

∣∣∣∣
x=cos θ

eimφ (20)

Y −m
l (θ, φ) =

√
2l + 1

4π

(l − m)!

(l + m)!

1

2ll!
(1 − cos2 θ)m/2

dl+m

dxl+m
(x2 − 1)l

∣∣∣∣
x=cos θ

e−imφ (21)

= (−1)mY m
l (θ, φ) (22)

A.3 Rotation of Spherical Harmonics on the Sphere
Under a rotation, each spherical harmonic of degree l is transformed into a linear combination of only
those spherical harmonics, Y m

l , −l ≤ m ≤ l, of the same degree. In particular if we parametrize our
rotation via the three euler angles, α, β, γ, and rotate our original function f , we have:

[D(α, β, γ)f ]l,m =
l∑

m′=−l

Dl
mm′(α, β, γ)f l,m

′

(23)

where Dl
mm′(α, β, γ) is the wigner-D function and is the amplitude of rotated state in m when the

original unrotated state is m′ (using quantum mechanics terminologies). In fact, only rotation about the
y-axis mixes states (or orders). Hence we can further decompose Dl

mm′(α, β, γ) into

Dl
mm′(α, β, γ) = e−imαdlmm′(β)e−im

′γ (24)

where, dlmm′(β) is a real function, the wigner-d function, whose formula is included here for complete-
ness [12]:

dlmm′(β) =
∑

j

(−1)j−m
′+m

√
(l + m′)!(l − m′)!(l + m)!(l − m)!

(l + m′ − j)!j!(l − j − m)!(j − m′ + m)!

(cos
β

2
)2l−2j+m′−m(sin

β

2
)2j−m

′+m (25)

The sum is over all j such that none of the denominator terms with factorials are negative.
By the Peter-Weyl theorem on compact groups [20]:
∫

SO(3)

Dl
mn(ρ)Dl′

m′n′(ρ)dρ =
8π2

2l + 1
δ(l − l′,m − m′, n − n′) (26)
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Another helpful identity is this:

Y m
l (β, α) =

√
2l + 1

4π

[
Dl
m0(α, β, γ)

]∗
=

√
2l + 1

4π

[
e−imαdlm0(β)

]∗
(27)

A.4 Axis-symmetric Functions
For axis-symmetric functions (independent of φ), we note that only the order 0 harmonics are non-zero.

B Proof of Continuous-Invertibility
In this appendix, we will prove Theorem 3.1 on continuous invertibility. We first note that using Parse-
val’s Theorem, we can write

yn(α, β, γ) =

∫

S2

[D(α, β, γ)h̃n]∗(θ, φ)x(θ, φ)dΩ (28)

=
∞∑

l′=0

l′∑

m′=−l′




l′∑

m′′=−l′

Dl′

m′,m′′(α, β, γ)h̃l
′,m′′

n



∗

xl
′,m′

(29)

Therefore, in reconstruction,

x̂(θ, φ) =

N∑

n=1

∫

SO(3)

[D(α, β, γ)hn](θ, φ)yn(α, β, γ)dρ (30)

=

N∑

n=1

∫

SO(3)

[D(α, β, γ)hn](θ, φ)

∞∑

l′=0

l′∑

m′=−l′




l′∑

m′′=−l′

Dl′

m′,m′′(α, β, γ)h̃l
′,m′′

n



∗

xl
′,m′

dρ (31)

Projecting x̂(θ, φ) onto the spherical harmonics basis and letting x̂l,m be the spherical harmonic coeffi-
cient of degree l and order m of x̂, we have

x̂l,m =

∫

S2

x̂(θ, φ)Y
m

l (θ, φ)dΩ (32)

=

N∑

n=1

∫

SO(3)

[∫

S2

[D(α, β, γ)hn](θ, φ)Y
m

l (θ, φ)dΩ

] ∞∑

l′=0

l′∑

m′=−l′




l′∑

m′′=−l′

Dl′

m′,m′′(α, β, γ)h̃l
′,m′′

n



∗

xl
′,m′

dρ (33)

=
N∑

n=1

∫

SO(3)

[
l∑

m′′′=−l

hl,m
′′′

n Dl
m,m′′′(α, β, γ)

]
∞∑

l′=0

l′∑

m′=−l′




l′∑

m′′=−l′

Dl′

m′,m′′(α, β, γ)h̃l
′,m′′

n



∗

xl
′,m′

dρ (34)

=

N∑

n=1

l∑

m′′′=−l

[
hl,m

′′′

n

] ∞∑

l′=0

l′∑

m′=−l′

xl
′,m′

l′∑

m′′=−l′

[
h̃l

′,m′′

n

]∗ ∫

SO(3)

Dl
m,m′′′(α, β, γ)Dl′

m′,m′′(α, β, γ)∗dρ (35)

= xl,m
8π2

2l + 1

N∑

n=1

l∑

m′′′=−l

[
hl,m

′′′

n

] [
h̃l,m

′′′

n

]∗
(36)

where we have used the Peter-Weyl theorem on compact group (Eq. (26)) in the last equality.

Hence, if xl,m 6= 0 and
∑N
n=1

∑l
m′′′=−l

[
hl,m

′′′

n

] [
h̃l,m

′′′

n

]∗
= 2l+1

8π2 , then x̂l,m = xl,m. If xl,m = 0,

then x̂l,m is also zero, and hence we also get x̂l,m = xl,m. Because the equations above go both ways,
we have thus obtained our necessary and sufficient conditions for invertibility.
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C Proof of Discrete-Invertibility
In this appendix, we will prove Theorem 3.2 on discrete invertibility. Remember from our definition
of discrete convolution that yn(αj,n, βs,n, γk,n) are samples of yn(α, β, γ). Hence, from Eq. (29), and
noting that the maximum degree of x to be L and finite, we get,

yn(αj,n, βs,n, γk,n) =

eLn∑

l′=0

l′∑

m′=−l′




l′∑

m′′=−l′

Dl′

m′,m′′(αj,n, βs,n, γk,n)h̃
l′,m′′

n



∗

xl
′,m′

(37)

Also, letting wj,s,k,n =
4π2ws,n

JnKn
(as required by the theorem), we have

x̂n(θ, φ) =

Jn−1∑

j=0

Sn−1∑

s=0

Kn−1∑

k=0

wj,s,k,n[D(αj,n, βs,n, γk,n)hn](θ, φ)yn(αj,n, βs,n, γk,n) (38)

=

Jn−1∑

j=0

Sn−1∑

s=0

Kn−1∑

k=0

4π2ws,n
JnKn

[D(αj,n, βs,n, γk,n)hn](θ, φ) (39)

eLn∑

l′=0

l′∑

m′=−l′




l′∑

m′′=−l′

Dl′

m′,m′′(αj,n, βs,n, γk,n)h̃
l′,m′′

n



∗

xl
′,m′

Projecting x̂n(θ, φ) onto the spherical harmonics, for l ≤ L (and hence |m| ≤ L), we have

x̂l,mn =

∫

S2

x̂n(θ, φ)Y
m

l (θ, φ)dΩ

=

Jn−1∑

j=0

Sn−1∑

s=0

Kn−1∑

k=0

4π2ws,n
JnKn

[
l∑

m′′′=−l

Dl
m,m′′′(αj,n, βs,n, γk,n)h

l,m′′′

n

]
(40)

eLn∑

l′=0

l′∑

m′=−l′




l′∑

m′′=−l′

h̃l
′,m′′

n Dl′

m′,m′′(αj,n, βs,n, γk,n)



∗

xl
′,m′

=
4π2

JnKn

l∑

m′′′=−l

hl,m
′′′

n

eLn∑

l′=0

l′∑

m′=−l′

xl
′,m′

l′∑

m′′=−l′

[
h̃l

′,m′′

n

]∗
(41)

Jn−1∑

j=0

Sn−1∑

s=0

Kn−1∑

k=0

ws,nD
l
m,m′′′(αj,n, βs,n, γk,n)D

l′∗
m′,m′′(αj,n, βs,n, γk,n)

where the second equality is obtained by performing the projection, and in the last equality we arrange
the terms so that they look like the setup for Peter-Weyl Theorem, except we have summations instead
of integrals. Noting that we can write Dl

mm′(α, β, γ) = e−imαdlmm′(β)e−im
′γ (Eq. (24)), the last part

of Eq. (41) becomes
Jn−1∑

j=0

Sn−1∑

s=0

Kn−1∑

k=0

ws,nD
l
m,m′′′(αj,n, βs,n, γk,n)D

l′∗
m′,m′′(αj,n, βs,n, γk,n) (42)

=

Jn−1∑

j=0

Sn−1∑

s=0

Kn−1∑

k=0

ws,ne
−imαj,ndlm,m′′′(βs,n)e

−im′′′γk,neim
′αj,ndl

′

m′,m′′(βs,n)e
im′′γk,n (43)

=

Sn−1∑

s=0

ws,nd
l
m,m′′′(βs,n)d

l′

m′,m′′(βs,n)



Jn−1∑

j=0

ei(m
′−m)αj,n



[
Kn−1∑

k=0

ei(m
′′−m′′′)γk,n

]
(44)
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We note that |m′| ≤ l′ ≤ L̃n and |m| ≤ L, and hence m′ − m has the finite range [−L̃n − L, L̃n + L].
Noting the range of m′ − m and since αj,n = 2πj

eLn+L+1
, where j = 0, 1, · · · , L̃n + L, we can conclude

that
Jn−1∑

j=0

ei(m
′−m)αj,n =

eLn+L∑

j=0

e
i(m′−m) 2πj

eLn+L+1 =

{
L̃n + L + 1 if (m′ − m) = 0
0 otherwise

(45)

Similarly, looking at where m′′ and m′′′ appear in Eq. (40), we can conclude that |m′′| ≤ Oh̃n
and

|m′′′| ≤ Ohn
. Hence, using the same reasoning, we get

Kn−1∑

k=0

ei(m
′′−m′′′)γk,n =

Oehn
+Ohn∑

k=0

e
i(m′′−m′′′) 2πk

O
ehn

+Ohn
+1

=

{
Oehn

+ Ohn
+ 1 if (m′′ − m′′′) = 0

0 otherwise
(46)

Therefore Eq. (44) becomes

Sn−1∑

s=0

ws,nd
l
m,m′′′(βs,n)d

l′

m′,m′′(βs,n)



Jn−1∑

j=0

ei(m
′−m)αj,n



[
Kn−1∑

k=0

ei(m
′′−m′′′)γk,n

]
(47)

= JnKn

Sn−1∑

s=0

ws,nd
l
m,m′′′(βs,n)d

l′

m′,m′′(βs,n)δ(m − m′)δ(m′′ − m′′′) (48)

= JnKn

Sn−1∑

s=0

ws,nd
l
m,m′′(βs,n)d

l′

m,m′′(βs,n)δ(m − m′)δ(m′′ − m′′′) (49)

=
2JnKn

2l + 1
δ(l − l′)δ(m − m′)δ(m′′ − m′′′) (50)

where in the second equality, m′′′ → m′′,m′ → m because of the delta functions, and the last equality
was obtained using the assumption that ws,n and βs,n are the quadrature weights and knots of the integral∫ π
0

dlmm′′(β)dl
′

mm′′(β) sin(β)dβ and hence we can use the Peter-Weyl Theorem. We can now substitute
equation (50) back into equation (41), and we get

x̂l,mn

=
4π2

JnKn

l∑

m′′′=−l

hl,m
′′′

n

eLn∑

l′=0

l′∑

m′=−l′

xl
′,m′

l′∑

m′′=−l′

[
h̃l

′,m′′

n

]∗ 2JnKn

2l + 1
δ(l − l′)δ(m − m′)δ(m′′ − m′′′) (51)

=
8π2

2l + 1
xl,m

l∑

m′′=−l

hl,m
′′

n h̃l,m
′′∗

n (52)

Noting that x̂(θ, φ) =
∑N
n=1 x̂n(θ, φ), we have

x̂l,m =
N∑

n=1

x̂l,mn =
8π2

2l + 1
xl,m

N∑

n=1

l∑

m′′=−l

hl,m
′′

n h̃l,m
′′∗

n = xl,m for all 0 ≤ l ≤ L (53)

We note that subtle variations of the theorem can be obtained, for example by increasing the maximum
degree of x to be greater than L or increasing the number of samples on α and β or both.

D Quadrature Rules
In this appendix, we will derive two different quadrature rules that satisfy the following: ws,n and βs,n
are the quadrature weights and knots such that for l ≤ L, l′ ≤ L̃n,

∫ π

0

f(β) sin βdβ =

∫ π

0

dlmm′(β)dl
′

mm′(β) sin(β)dβ =

Sn−1∑

s=0

ws,nd
l
mm′(βs,n)d

l′

mm′(βs,n) (54)
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D.1 Quadrature Rule (1)
We first note that f(β) consists of a linear combination of even powers of cos(β/2) and sin(β/2) (see
Eq. (25)). Hence, if we make the substitution u = sin(β/2), and noting that f(u) will now be a
polynomial with maximum degree, Q = 2(l + l′) ≤ 2(L + L̃n), we get

∫ π

0

f(β) sin βdβ = 2

∫ π

0

f(β) sin(β/2) cos(β/2)dβ = 4

∫ 1

0

f(u)udu (55)

Now, making the substitution, v = 2u − 1, we have
∫ π

0

f(β) sin βdβ = 2

∫ 1

−1

f(
v + 1

2
)
v + 1

2
dv = 2

N−1∑

k=0

rk
vk + 1

2
f(

vk + 1

2
) (56)

where rk are defined to be the weights of the Gauss-Legendre quadrature on the interval [−1, 1], and vk
corresponds to the sampling knots. The weights and abscissas can be found by standard algorithms (see
for example [11]). Note that because the integrand has highest polynomial power Q + 1, if N ≥ Q

2 + 1

or N ≥ roof(Q2 ) + 1, then 2N − 1 ≥ Q + 1 and the quadrature formula is exact.
From the substitution above, we have sin βk

2 = uk = vk+1
2 or βk = 2 sin−1( vk+1

2 ). Note that
we can assume the range of sin−1 to be [0, π2 ] since cos can be expressed in terms of sin and the
even powers of cos in f will take care of the rest. In conclusion, for N = roof(Q2 ) + 1, we have∫ π
0

dlmm′(β)dl
′

mm′(β) sin βdβ =
∑N−1
s=0 wsf(βs), where ws = rs(vs + 1) and βs = 2 sin−1( vs+1

2 ).

D.2 Quadrature Rule 2
We will derive another rule in this section, using the technique shown in [6]. But first we need to obtain
the fourier series formula for the square wave, SQ(u), which is defined to be periodic from −π to π and
is +1 from −π to −π/2 and 0 to π/2 and −1 otherwise.

1

2π

∫ π

−π

SQ(u)e−ikudu =
1

2π

[ ∫ −π/2

−π

e−ikudu −

∫ 0

−π/2

e−ikudu +

∫ π/2

0

e−ikudu −

∫ π

π/2

e−ikudu

]
(57)

=
i

2πk

[
e−iku

∣∣∣
−π/2

−π
− e−iku

∣∣∣
0

−π/2
+ e−iku

∣∣∣
π/2

0
− e−iku

∣∣∣
π

π/2

]
(58)

=
i

2πk

[
(eik

π
2 − eikπ) − (1 − eik

π
2 ) + (e−ik

π
2 − 1) − (e−ikπ − e−ik

π
2 )

]
(59)

=
i

πk

[
eik

π
2 + e−ik

π
2 − 1 −

1

2
eikπ −

1

2
e−ikπ

]
(60)

=
i

πk

[
2 cos(k

π

2
) − 1 − cos(kπ)

]
(61)

If k = 4n, we get 2 cos(2nπ) − 1 − cos(4nπ) = 0
If k = 4n + 1, we get 2 cos(2nπ + π

2 ) − 1 − cos(4nπ + π) = 0
If k = 4n + 2, we get 2 cos(2nπ + π) − 1 − cos(4nπ + 2π) = −4
If k = 4n + 3, we get 2 cos(2nπ + 3π

2 ) − 1 − cos(4nπ + 3π) = 0

Hence, the fourier series for SQ(u) is non-zero for k = 4n + 2, and is equal to −4 i
πk , and we have

SQ(u) =

∞∑

p=−∞

−
4i

π(4p + 2)
ei(4p+2)u =

∞∑

p=−∞

−
2i

π(2p + 1)
ei(4p+2)u (62)

Now, we can continue with the derivation of the quadrature. We note that f(β) =
∑
k,k′ ak cos(β/2)k sin(β/2)k

′

,
where k and k′ are always even, at least zero and bounded. We can re-express them as complex expo-
nentials so that f(β) =

∑
q bq(e

iβ/2)q where now, q can take on negative values, but it is still bounded
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on top and below, |q| ≤ 2(l + l′) ≤ 2(L + L̃n) . Note that if we make the substitution β′ = β/2, we
now have f(β′) =

∑
k,k′ ak cos(β′)k sin(β′)k

′

=
∑
q bq(e

iβ′

)q . Therefore,
∫ π

0

f(β) sin(β)dβ

= 2

∫ π/2

0

f(β′) sin(2β′)dβ′ (63)

=
1

2

∫ −π/2

−π

f(β′) sin(2β′)dβ′ −
1

2

∫ 0

−π/2

f(β′) sin(2β′)dβ′ (64)

+
1

2

∫ π/2

0

f(β′) sin(2β′)dβ′ −
1

2

∫ π

π/2

f(β′) sin(2β′)dβ′

=
1

2

∫ π

−π

f(β′) sin(2β′)SQ(β′)dβ′ (65)

where the middle equality was obtained using symmetry arguments since f is a linear combination of
even positive powers of sin and cos.

Since |q| ≤ Q implies that the term f(β′) sin(2β′) has exponential powers ≤ Q+2, we can eliminate
terms in the fourier series of SQ(β′) that falls out of the range (by orthonormality of the exponentials),
hence we only require p such that

|4p + 2| ≤ Q + 2 (66)
⇔ −Q − 2 ≤ 4p + 2 ≤ Q + 2 (67)

⇔ −
Q

4
− 1 ≤ p ≤

Q

4
(68)

⇔ −floor(
Q

4
) − 1 ≤ p ≤ floor(

Q

4
) (69)

Hence defining S̃Q(β′) =
∑floor( Q

4 )

p=−floor( Q
4 )−1

− 2i
π(2p+1)e

i(4p+2)β′

, we have
∫ π

0

f(β) sin(β)dβ =
1

2

∫ π

−π

f(β′) sin(2β′)S̃Q(β′)dβ′ (70)

=
1

2

Q∑

q=−Q

bq

floor( Q
4 )∑

p=−floor( Q
4 )−1

−
2i

π(2p + 1)

∫ π

−π

eiβ
′q ei2β

′

− e−i2β
′

2i
ei(4p+2)β′

dβ′ (71)

Let us define the highest exponential power to be B and notice that B = Q + 2 + 4floor(Q4 ) + 2 =

Q + 4floor(Q/4) + 4, while lowest exponential power corresponds to −Q − 2 − 4floor(Q4 ) − 2 =

−Q − 4floor(Q4 ) − 4 = −B. Let N be the smallest integer such that B < 4N , where N is an integer.
Hence N = floor(Q4 ) + floor(Q4 ) + 1 + 1 = 2floor(Q4 ) + 2

It is easy to verify the following identity:

1

4N

2N−1∑

k=−2N

e
2πikl
4N =

1

2π

∫ π

−π

eilβ
′

dβ′ ∀|l| < 4N (72)
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Substituting the identity into the equation above, we get

1

2

Q∑

q=−Q

bq

floor( Q
4 )∑

p=−floor( Q
4 )−1

−
2i

π(2p + 1)

π

2N

2N−1∑

k=−2N

e
2πikq
4N

e
2πik2
4N − e

−2πik2
4N

2i
e

2πik(4p+2)
4N (73)

=
π

4N

2N−1∑

k=−2N

Q∑

q=−Q

bqe
2πikq
4N sin(

4πk

4N
)

floor( Q
4 )∑

p=−floor( Q
4 )−1

−
2i

π(2p + 1)
e

2πik(4p+2)
4N (74)

=
π

4N

2N−1∑

k=−2N

f(β′
k =

2πk

4N
) sin(

4πk

4N
)S̃Q(

2πk

4N
) (75)

=
π

4N

2N−1∑

k=−2N

f(β′
k =

2πk

4N
) sin(

πk

N
)S̃Q(

πk

2N
) (76)

=
π

2N

2N−1∑

k=0

f(β′
k =

2πk

4N
) sin(

πk

N
)S̃Q(

πk

2N
) (77)

=
π

N

N−1∑

k=0

f(β′
k =

2πk

4N
) sin(

πk

N
)S̃Q(

πk

2N
) (78)

where the second last equality uses the fact that sin(−2π) = 0 and the function f is even, and the last
equality uses the fact that sin π = 0 and f(β′) is even about β′ = π. Because β

′

k = βk/2 = 2πk
4N ,

hence βk = πk
N for k = 0, 1, · · ·N − 1 corresponds to our quadrature knots, with quadrature weights,

wk = π
N sin(πkN )S̃Q( πk2N ).

D.3 Quadrature Conclusion
We have formulated two possible ways of obtaining an exact quadrature of

∫ π
0

dlmm′(β)dl
′

mm′(β)dβ and
the integral is equal to

∑N−1
s=0 wsd

l
mm′(βs)d

l′

mm′(βs) = 2
2l+1δ(l− l′) if we pick the correct samples and

corresponding weights. In particular, this is true for

1. βs = 2 sin−1( vs+1
2 ) for s = 0, 1, · · ·N − 1 with N = roof(Q2 ) + 1, where Q is the highest

polynomial power of f(u = sin β
2 ) and ws = rs(vs + 1), where rs and vs are the weights and

nodes of the gaussian-lengendre quadrature on the interval [-1,1]

2. βs = πs
N for s = 0, 1, · · ·N − 1 with N = 2floor(Q4 ) + 2, where Q is the highest complex

exponential power of dlmm′(β′ = β
2 )dl

′

mm′(β′ = β
2 ) and ws = π

N sin(πsN )S̃Q( πs2N )

Note that Q = 2(l + l′) ≤ 2(L + L̃n)

E Inverse Convolution with Axis-symmetric Filter
In this section, we illustrate the computation of the inverse convolution of y(α, β) with an axis-symmetric
filter h(θ, φ). Starting with the definition of inverse convolution, using Parseval’s Theorem and Eq. (27),
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we get

x̂(θ, φ) =

∫

SO(3)

[D(α, β, γ)h](θ, φ)y(α, β)dρ (79)

=

∫

SO(3)


∑

l,m

(
Dl
m0(α, β, γ)hl,0

)
Y m
l (θ, φ)


 y(α, β)dρ (80)

=

∫

SO(3)


∑

l,m

(
Dl
m0(α, β, γ)hl,0

)
√

2l + 1

4π
Dl∗
m0(φ, θ, γ′)


 y(α, β)dρ (81)

Noting that γ′ can take on any value without affecting the equation, we get

x̂(θ, φ) =

∫

SO(3)


∑

l,m

(
Dl∗
m0(φ, θ, γ′)hl,0

)
Y m∗
l (β, α)


 y(α, β)dρ (82)

=

∫

SO(3)


∑

l,m

(
Dl
m0(φ, θ, γ′)hl,0∗

)
Y m
l (β, α)



∗

y(α, β)dρ (83)

=

∫

SO(3)

[D(φ, θ, γ′)h∗]
∗
(β, α)y(α, β)dρ (84)

=

∫ 2π

0

∫ π

0

∫ 2π

0

[D(φ, θ, γ′)h∗]
∗
(β, α)y(α, β) sin βdαdβdγ (85)

= 2π

∫ π

0

∫ 2π

0

[D(φ, θ, γ′)h∗]
∗
(β, α)y(α, β) sin βdαdβ (86)

Eq. (86) without the 2π is simply a forward convolution between the spherical image y(α, β) (where
we remind the readers that α is taking the role of φ and β is taking the role of θ) and the filter h∗(β, α).
Hence using Eq. (15), we get

[x̂(θ, φ)]l,m = 2π

√
4π

(2l + 1)
yl,mhl,0 (87)
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