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ABSTRACT

Performance of automated methods to isolate brain from non-brain tissues in magnetic
resonance (MR) structural images may be influenced by MR signal inhomogeneities, type of MR
image set, regional anatomy, and age and diagnosis of subjects studied. The present study
compared the performance of four methods, Brain Extraction Tool (BET, Smith 2002);
3dIntracranial (Ward 1999, in AFNI); a Hybrid Watershed algorithm (HWA, Segonne et al.
2004, in FreeSurfer); and Brain Surface Extractor (BSE, Sandor and Leahy 1997; Shattuck et al.
2001), to manually stripped images. The methods were applied to un-corrected and bias-
corrected datasets; Legacy and Contemporary T1-weighted image sets; and four diagnostic
groups (depressed, Alzheimer's, young and elderly control). To provide a criterion for outcome
assessment, two experts manually stripped six sagittal sections for each dataset in locations
where brain and non-brain tissue are difficult to distinguish. Methods were compared on Jaccard
similarity coefficients, Hausdorff distances, and an Expectation-Maximization algorithm.
Methods tended to perform better on contemporary datasets; bias correction did not significantly
improve method performance. Mesial sections were most difficult for all methods. Although
AD image sets were most difficult to strip, HWA and BSE were more robust across diagnostic
groups compared with 3dIntracranial and BET. With respect to specificity, BSE tended to
perform best across all groups, whereas HWA was more sensitive than other methods. The
results of this study may direct users towards a method appropriate to their T1-weighted datasets

and improve the efficiency of processing for large, multi-site neuroimaging studies.
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INTRODUCTION

Quantitative morphometric studies of magnetic resonance (MR) images often require a
preliminary step to isolate brain from extracranial or “non-brain” tissues. This preliminary step,
commonly referred to as “skull-stripping,” facilitates image processing such as surface
rendering, cortical flattening, image registration, de-identification, and tissue segmentation. To
be feasible for large-scale, multi-site studies, such as the projects supported by the Biomedical
Informatics Research Network (BIRN), skull-stripping methods should be accurate and relatively
automated. Numerous automated skull-stripping methods have been proposed (e.g., Dale et al.
1999; Hahn and Peitgen 2000; Sandor and Leahy 1997; Segonne et al. 2004; Shattuck et al.
2001; Smith 2002; Ward 1999) and are widely used. However, the performance of these
methods, which rely on signal intensity and signal contrast, may be influenced by numerous
factors including MR signal inhomogeneities, type of MR image set, gradient performance,
stability of system electronics, and extent of neurodegeneration in the subjects studied (Smith
2002). Sub-optimal outcomes of automated processing often require manual adjustment of
method parameters and/or manual editing to create a suitable skull-stripped volume. Manual
adjustment increases processing time and the level of required expertise, and potentially
introduces inaccuracies or inconsistencies. There is a clear need to better understand the factors
that influence the performance of various automated skull-stripping methods. The results of such
studies may direct users towards a method appropriate to their particular datasets and improve
the efficiency of processing for large, multi-site neuroimaging studies.

In addition to manual approaches, the primary bases for skull-stripping include intensity
threshold, morphology, watershed, surface-modeling, and hybrid methods (e.g., Dale et al. 1999;

Hahn and Peitgen 2000; Sandor and Leahy 1997; Segonne et al. 2004; Shattuck et al. 2001;
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Smith 2002; Ward 1999). Although perhaps the most accurate, manual methods require
significant time for completion, particularly on high-resolution volumes that often contain more
than 120 slices. Furthermore, rigorous training is crucial to develop reliable standards that
reduce the subjectivity of decisions. Depending on whether a study collects single contrast
images or images with varying contrast, threshold methods define minimum and maximum
values along one or more axes representing voxel intensities for univariate or multivariate
histograms (e.g., DeCarli et al. 1992). Morphology or region-based methods rely on connectivity
between regions, such as similar intensity values, and often are used with intensity thresholding
methods ( e.g., 3dIntracranial, Ward 1999; in AFNI, Cox 1996). Other approaches combine
morphological methods with edge detection (e.g., Brain Surface Extractor, Sandor and Leahy
1997; Shattuck et al. 2001). Although watershed algorithms use image intensities, they operate
under the assumption of white matter connectivity (e.g., Hahn and Peitgen 2000). Watershed
algorithms try to find a local optimum of the intensity gradient for pre-flooding of the defined
basins to segment the image into brain and non-brain components. That is, the volume is
separated into regions connected in 3D space, and basins are filled up to a pre-set height.
Surface-model-based methods, in contrast, incorporate shape information through modeling the
brain surface with a smoothed deformed template (e.g., Dale et al. 1999; Brain Extraction Tool
Smith 2002). A recent Hybrid Watershed method ( HWA, Segonne et al. 2004; in FreeSurfer,
Dale et al. 1999; Fischl and Dale 2000; Fischl et al. 1999) incorporated the watershed techniques
of Hahn and Peitgen (2000) with surface-based methods of Dale et al. (1999). The resulting
HWA method relies on white matter connectivity to build an initial estimate of the brain volume
and applies a parametric deformable surface model, integrating geometric constraints and

statistical atlas information, to locate the brain boundary.
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A few previous studies of available automated skull-stripping methods have employed
quantitative error rate analyses to compare the potential advantages and disadvantages of each
approach (Boesen et al. 2004; Lee et al. 2003; Segonne et al. 2004; Smith 2002). In a careful
evaluation of automated skull-stripping methods, Smith (2002) reviewed various approaches,
introduced the Brain Extraction Tool (BET), and examined the automated performance of BET
and two commonly available methods relative to manually skull-stripped volumes. The
automated performance of BET (v. 1.1) was compared to the performance of a modified version
of AFNI’s 3dIntracranial (Ward 1999; in AFNI v. 2.29, Cox 1996) and Brain Surface Extractor
(BSE v. 2.09, Sandor and Leahy 1997; Shattuck et al. 2001). The test data was acquired across
many scanners and included primarily T1-weighted images as well as some T2 and PD-weighted
image sets.. Analysis of a percent error measure revealed that BET produced significantly fewer
errors relative to the modified AFNI and BSE methods across all dataset types and within only
the T1-weighted datasets, although the difference was smaller in the latter comparison. Relative
to the hand-segmented volumes, BET tended to produce a slightly smaller and more smoothed
volume. Smith (2002) also examined the effect of systematically varying software parameters
for each dataset. The findings suggested that all three methods performed similarly well under
individually optimized conditions, particularly for T1-weighted images. The optimal parameters
selected, however, did not reveal any consistent within-sequence values that might be
automatically applied; thus, BET was judged the most robust and successfully automated
application examined when global parameters were used. The author (Smith 2002) suggested
that performance of these automated methods might be improved with pre-processing, such as
the correction of field inhomogeneities, although most bias correction algorithms require datasets

be skull-stripped prior to their application.
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Subsequently, Lee et al. (2003) reported an evaluation of BET, BSE, and ANALYZE 4.0
as well as the authors’ local Region Growing Tool (RG) relative to manual skull-stripping. BET
and BSE were applied in an automated fashion whereas ANALYZE and RG required manual
interaction. All methods were tested on the T1-weighted Montreal Neurological Institute’s
BrainWeb phantom at different levels of noise and on T1-weighted human datasets from the
Internet Brain Segmentation Repository. Similarity indices that incorporated both false positive
and false negative rates suggested no difference between methods for the small set of phantom
data, although BSE excluded some brain tissue. Examination of the human data revealed that
RG was more similar to the manual criterion than were the other three methods. The
segmentation error rates suggested that BET included more non-brain tissue, whereas BSE and
ANALYZE both removed some brain tissue. The authors suggested that the automated
processing results were somewhat inaccurate, but that a two-step processing procedure utilizing
both the semi-automated and automated methods may be useful.

Two more recent studies have examined skull-stripping performance with slightly
different approaches. Boesen et al.(2004) examined the performance of BET (v. 1, Smith 2002),
BSE (v. 2.99, Sandor and Leahy 1997; Shattuck et al. 2001), SPM (2b), and the Minneapolis
Consensus Strip (MCS; intensity based thresholding and the use of BSE). Parameters for BET
and BSE were examined in two ways 1) optimized parameters based on three training volumes
and then applied in an automated fashion, and 2) subject-specific parameter settings based on an
exhaustive review of all parameter combinations, selecting the outcome that produced the least
misclassified tissue. Two sets of T1-weighted volumes were stripped and compared to manually
stripped volumes. Results suggested that MCS and, in some cases, BSE tended to outperform

the other methods, although MCS was least affected by site-related differences. Although MCS
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requires more user interaction, the authors suggest that such a hybrid method may improve
performance.

Finally, a relatively new hybrid approach, Hybrid Watershed (HWA, Segonne et al.
2004) has been compared to the performance of four skull-stripping methods: FreeSurfer’s
original method (Dale et al., 1999); BET (Smith 2002); a watershed algorithm (Hahn and
Peitgen, 2000); and BSE (Shattuck et al., 2001). Forty-three T1-weighted images from two sites
were used, and automated performance was compared to manually skull-stripped volumes.
HWA produced the highest similarity coefficients for both datasets, BSE performed second best
on the higher quality dataset, whereas BET often included additional non-brain tissue. In an
evaluation of the risk reflecting a higher cost related to removing brain tissue than to adding non-
brain tissue, HWA typically included all brain tissue and found the pial surface in most datasets.

Although these studies launched the quantitative evaluation of skull-stripping methods,
important questions need to be answered before automated skull-stripping methods can be
faithfully used in large-scale image analysis. First, little published research has focused on the
impact of subject variables, such as age and diagnosis, on the accuracy of skull-stripping
routines. Yet both aging and common neurodegenerative diseases, such as Alzheimer’s disease
(AD), reduce image contrast and adversely homogenize histograms, create partial volume
effects, and obscure edges. Second, although Smith (2002) suggested that bias correction of MR
signal inhomogeneities might improve results of automated skull-stripping programs, to the best
of our knowledge, no studies have directly compared skull-stripping of bias corrected and
uncorrected images. Third, large-scale image sets frequently contain legacy images collected
over many years. Legacy image sets often include images of varying quality as gradients,

software and electronic components of MR systems change over time. Little has been published
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regarding how results of skull-stripping of legacy images compares with results from more
homogenous, contemporary image sets. Fourth, previous skull-stripping studies have not
evaluated the impact of local anatomy on skull-stripping results. Yet, in our experience,
separation of skull from brain can be especially difficult in some regions, such as the anterior or
posterior fossa, where subtle gradations of white matter, gray matter, soft tissue, and bone occur
in proximity. Finally, most previous studies used one metric to measure the accuracy of skull-
stripping methods. Multidimensional metrics of performance, such as those presented in this
paper, may provide a better description of performance comparisons, as they can measure several
aspects of similarity (Hand et al. 2001).

In the present study we investigated the effects of age and diagnosis, bias correction, type
of image set (Legacy vs. Contemporary), and local anatomy (Slice location) on the performance
of four automated skull-stripping methods. We predicted that MR brain images obtained from
older individuals and those obtained from patients with AD would be less accurately skull-
stripped than images from other groups. We expected that bias correction would improve the
performance of 3dIntracranial due to its reliance on fitting the intensity histogram, whereas other
methods also might be improved to varying extents. We also predicted less accurate skull-
stripping of legacy images, where data are less likely to meet contemporary quality standards for
image acquisition. And finally, given the difficulties distinguishing posterior fossa soft tissue
from adjacent brain, we hypothesized that mesial brain slices, which include large posterior fossa
regions and voxels including both partially-volumed tissue and CSF, would be less accurately
skull-stripped than other regions. This assessment of local anatomical effects of skull-stripping,
rather than examining the whole brain volume, is particularly relevant for subsequent

morphometric studies of these regions of interest.
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The methods studied herein — 3dIntracranial (Ward 1999; in AFNI, Cox 1996), BET
(Smith 2002), HWA (Segonne et al. 2004; in FreeSurfer, Dale et al. 1999; Fischl and Dale 2000;
Fischl et al. 1999), and BSE (Sandor and Leahy 1997; Shattuck et al. 2001) — encompass most of
the commonly used algorithms for skull-stripping. We evaluated the most current software
versions with expert input from developers to select the appropriate parameters for automated
application. To provide a reasonable criterion, or “gold standard,” for outcome assessment, two
experts manually skull-stripped six sagittal sections in standard locations for all datasets. These
manual outcomes were compared to automated outcomes with the Jaccard similarity index (JSC;
Jaccard 1912; Zou et al. 2004a; Zou et al. 2004b), which expresses the overlap between
automated and manual skull-stripping for each slice, and the Hausdorff distance measure
(Huttenlocher et al. 1993), which examines the degree of mismatch between the contours of two
image sets, providing information on shape differences. Then, all methods, including manual
skull-stripping, were compared with an Expectation-Maximization algorithm (EM; Warfield et
al. 2004; Zou et al. 2004b), which provides both sensitivity and specificity information.
MATERIALS AND METHODS

MR Image Sets: Data collected using two common structural gradient-echo (SPGR) T1-
weighted pulse sequences were examined. All datasets were collected on a GE 1.5T magnet at
the VA San Diego Healthcare System MRI Facility that was subject to regular hardware and
software upgrades over time. Legacy Datasets were collected over four years in the mid to late
1990s (June of 1994 and July of 1998): TR=24ms, TE=5ms, NEX=2, flip angle=45 degrees,
field of view of 24cm, and contiguous 1.2 mm sections (sagittal acquisition). Contemporary
Datasets were collected between May of 2002 and April of 2003: TR=20 ms, TE=6ms, NEX=1,

flip angle=30 degrees, field of view of 25cm, and contiguous 1.5 mm sections (sagittal
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acquisition). Of the 32 datasets examined, 16 were Legacy, and 16 were Contemporary (Table
I). The University of California, San Diego institutional review board approved all procedures,

and written informed consent was obtained from all subjects.

INSERT TABLE I ABOUT HERE

Diagnostic Groups: For each MR Image set of 16 datasets, four different diagnostic
groups were represented, including depressed (DEPR), Alzheimer's (AD), young (YNC) and
elderly normal controls (ENC), with four subjects from each group (Table I). The YNC and
DEPR groups were similar on age and education, as were the ENC and AD groups. Each
diagnostic group from Legacy and Contemporary datasets were similar on age and gender, and
the AD groups were also matched on disease stage as measured with the Mini-Mental State
Examination (MMSE, Folstein et al. 1975).

Bias Correction: To correct image bias we employed the Non-parametric Non-uniform
intensity Normalization method (N3, Sled et al. 1998), which uses a locally adaptive bias
correction algorithm. This method was chosen for its applicability to un-skull-stripped image
sets and for its excellent performance compared with other bias correction methods (Arnold et al.
2001). All 32 datasets were studied with and without prior bias correction with N3.

Manual Skull-Stripping: Two anatomists manually skull-stripped six sagittal slices from
each raw MR image set to provide a criterion, or “gold standard,” against which to judge the
automated skull-stripping outcomes. Both anatomists (CPC and SM) were experienced
neuroimaging experts with training in neuroscience and neuroanatomy. Both anatomists, in

collaboration with a trained neuroanatomist (CFN), completed four sample datasets not included
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in the present study to formalize a set of criteria for skull-stripping. If anatomists were unable to
definitively classify tissue as brain or non-brain, they were instructed to conservatively include
this tissue. Anatomists were provided with all orthogonal views, which provided them with
better spatial information to make their decisions. Comparisons of the two anatomists manually
skull-stripped datasets are examined in the Results section. Six sagittal slices were selected to
assess skull-stripping on mid-sagittal slices and on lateral slices passing through the anterior
medial temporal, anterior inferior frontal, posterior cerebellar regions, and posterior occipital
regions (Figure 1). Brain and non-brain tissues in these regions are often difficult to distinguish
on T1-weighted images, particularly in the posterior fossa (Figure 1, Slices 4-6A) and anterior
temporal lobe (Figure 1, Slices 4-6B). The mid-line sections, in addition to including the
posterior fossa, often contain cerebrospinal fluid that may be difficult to distinguish from

partially-volumed adjacent cortex (Figure 1, Slice 4C and 4D).

INSERT FIGURE 1 ABOUT HERE

Automated methods and parameter selection: For each method except 3dIntracranial
(the developer choose not to participate), developers of the automated methods were provided
with two sample datasets, one young, healthy control from the Legacy image set and one from
the Contemporary image set. We asked developers to suggest the most appropriate parameters
for the automated application of their software using the image sets provided. These values were
used for all analyses in this study. The selected parameters and the computational processing
times are defined within each method description below. The elapsed average processing time

per dataset is based on the use of a Dell Pentium Xeon 2.2 or 2.4 GHz with 512 MB RAM.
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1. 3dIntracranial (3dIntra, Ward 1999); in AFNI v. 2.29 (Cox 1996). 3dIntra, included in

the Analysis of Functional Neurolmage (AFNI) library, involves several steps. First a three-
compartment Gaussian model is fit to the intensity histogram. A downbhill simplex method is
used to estimate means, standard deviations, and weights of presumed gray matter, white matter,
and background compartments. From these estimated values, a probability density function
(PDF) is derived to set upper and lower signal intensity bounds as a first step to identify brain
voxels. Upper and lower bounds are set to exclude non-brain voxels. Next a connected brain
region within each axial slice is identified by finding the complement of the largest non-brain
region within that slice, under the constraint that the area of connected brain becomes smaller as
the segmentation moves from the center of the brain. The union of such connected brain regions
is formed as this slice-by-slice segmentation is repeated for sagittal and coronal slices. Next a
3D envelope based on local averaging smoothes brain edges. Finally, brain voxels with few
brain voxel-neighbors are excluded from brain, whereas holes with many brain-voxel-neighbors
are included. 3dIntracranial is integrated in the extensive library of AFNI image analysis tools,
and its public source code is freely available at http://afni.nimh.nih.gov/afni/. The 3dIntracranial
parameters utilized in the present study were the default parameters, described as follows:
minimum voxel intensity limit = internal probability density function (PDF) estimate for lower
bound; maximum voxel intensity limit = internal PDF estimate for upper bound; minimum voxel
connectivity to enter m=4; maximum voxel connectivity to leave n=2; and spatial smoothing of

segmentation mask.

2. Brain Extraction Tool - Version 1.2 (BET, Smith 2002). BET employs a deformable

model to fit the brain’s surface using a set of “locally adaptive model forces.” This method

estimates the minimum and maximum intensity values for the brain image, a “centre of gravity”
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of the head image, and head size based on a spherical equivalent, and subsequently initializes the
triangular tessellation of the sphere’s (head’s) surface. BET v. 1.2 is freely available in the
FMRIB FSL Software Library (http://www.fmrib.ox.ac.uk/fsl/). The developer recommended
the default parameters for automated processing of both the legacy and contemporary images.
The parameters utilized in the application herein are the default parameters, described as follows:

fractional intensity threshold = 0.5; vertical gradient in fractional intensity threshold = 0.

3. Hybrid Watershed Algorithm - Version 1.21 (HWA, Segonne et al. 2004); in

FreeSurfer (Dale et al. 1999: Fischl and Dale 2000; Fischl et al. 1999). This HWA method is a

hybrid of a watershed algorithm (Hahn and Peitgen 2000) and a deformable surface model (Dale
et al. 1999) that was designed to be conservatively sensitive to the inclusion of brain tissue. In
general, watershed algorithms segment images into connected components, using local optima of
image intensity gradients. HWA uses a watershed algorithm that is solely based on image
intensities; the algorithm, which operates under the assumption of the connectivity of white
matter, segments the image into brain and non-brain components. A deformable surface-model
is then applied to locate the boundary of the brain in the image. A final option under
development will incorporate an atlas-based analysis to verify the correctness of the resulting
surface, modify it if important structures have been removed, and locate the best-estimate
boundary of the brain in the image. In HWA v. 1.21, the atlas-based option was not finalized,
resulting in a considerably better performance without the atlas-based option. Therefore, the
present study examined HWA without the atlas option. HWA v. 1.21 is freely available as a
component of the FreeSurfer software package at http://surfer.nmr.mgh.harvard.edu/. HWA
developers recommended the default parameters for automated processing of both legacy and

contemporary images. The parameters utilized in this study are the hard-coded default
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parameters of HWA without the atlas option.

4. Brain Surface Extractor —Version 3.3 (BSE, Sandor and Leahy 1997: Shattuck et al.

2001). BSE, designed to fit the surface of all CNS regions, including the spinal cord, uses a
sequence of anisotropic diffusion filtering, Marr-Hildreth edge detection, and morphological
processing to segment the brain within whole head MRI. In MRI of the brain, the boundary
between the brain and the skull will produce a contour in the Marr-Hildreth edge detection result.
Additional gradients in the image may otherwise act as decoys for automated methods; for this
reason, BSE uses anisotropic diffusion filtering (Perona and Malik 1990). This is a spatially
adaptive edge-preserving filtering technique that smoothes small image gradients while
preserving larger variations that correspond to strong edges in the image. Because of noise in the
image and actual anatomic connections such as optic tracts, the brain contour that BSE generates
may not separate the brain from the rest of the head. BSE breaks remaining connections between
the brain and the other tissues in the head using a morphological erosion operation. After
identifying the brain using a connected component operation, BSE applies a corresponding
dilation operation to undo the effects of the erosion. As a final step, BSE applies a
morphological closing operation that fills small pits and holes that may occur in the brain
surface. BSE v. 3.3 is freely available for download from the BrainSuite website,
http://neuroimage.usc.edu/brainsuite/. The developers recommended the following parameters
for automated processing of both legacy and contemporary image sets: anisotropic filter = 5
iterations with 5.0 diffusion constant; edge detector kernel = 0.8 sigma. These parameters were
utilized in this study.

Statistical Analyses: Data analytic methods included the following: 1) the comparison

of two manual anatomists’ performance using the Jaccard similarity coefficient (JSC) to measure
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degree of correspondence, or overlap, for each image slice; 2) detailed qualitative review of all
outcomes; 3) the comparison of each manually skull-stripped outcome (the criterion) to the
outcome of each automated method using the JSC to measure the degree of correspondence for
each slice (Jaccard 1912; Zou et al. 2004a; Zou et al. 2004b); 4) a similar comparison of methods
with the Hausdorff distance measure (Huttenlocher et al. 1993) to examine the degree of
mismatch between the contours (or shape) of two image sets; and 5) the comparison of the
sensitivity and specificity of all methods (including both manual sets) derived from an
Expectation-Maximization (EM) algorithm (STAPLE, Warfield et al. 2004; Zou et al. 2004b),
which provides a maximum likelihood estimate of the underlying brain prototype inferred from

the results of all skull-stripping methods .

Jaccard Similarity Comparison: The JSC is formulated as

JSC(A4,B)=(ANB)/ (AUB)

where A is the area of brain region of the manually skull-stripped image slice (criterion) and B is
the area of brain region of the corresponding image slice skull stripped using the compared skull-
stripping tool (Jaccard 1912; Zou et al. 2004a; Zou et al. 2004b). A JSC of 1.0 represents
complete overlap or agreement, whereas an index of 0.0 represents no overlap. At both
extremes, this JSC is similar to the Dice similarity coefficient, which is a simple transform.

First, the JSC was employed to describe the overall level of similarity between the two manual
outcomes by expressing the overlap between each pair of slices. Second, the results of the four
automated skull-stripping tools (with and without bias correction) were compared to the

manually stripped slices.

Hausdorff Distance Image Comparison: We applied Hausdorff distance measures

(Huttenlocher et al. 1993) to examine the degree of mismatch between the contours of two image
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sets (A and B). This measure reflects the distance of the point in A that is farthest from any
point of B and vice versa. Given two finite point sets 4 = {a,, ..., a,} and B= {b,, ...,b,}, where
A and B are sets of points on the contour of a skull-stripped brain slice. The Hausdorff distance
is defined as:

H(A,B) = max(h(4,B), h(B,A))
The directed Hausdorff distance from A to B /(A4,B) is defined as:

h(4,B) =max min ||a-b]|
a€A bEB

Here the norm is L, or Euclidian norm, where h(A,B) and h(B,A) are asymmetrical distances.
Since Hausdorff distance measures the extent to which each point of a particular image
point set lies near some point of another image point set, it can be used to determine the degree
of resemblance between two objects superimposed on one another. For the Hausdorff distance d,
every point of A must be within a distance d of some point of B and vice versa. The maximum
displacement for the Hausdorff measure is calculated for each image comparison, A and B. For
example, in Figure 4 (right panels), the distance from each point on the yellow contour (A:
manual strip) to each point on the red contour (B: automated strip) is calculated. In our
estimation of the Hausdorff distance, we adjusted the calculations to exclude outliers; if only a
very few points are far from average, these extreme distances would not meaningfully represent
common method performance. That is, the distance measure would not be representative of the
common features resulting from automated application. In the present application of the
Hausdorff measure, the algorithm first orders the boundary points distances (in ascending order).
The 25™ and 75" percentiles are then estimated for image A and B and the interquartile range
(IQR) for image A and B is estimated. The IQR is equal to the boundary point distance at the

75" percentile less the boundary point distance at the 25" percentile. The present comparison
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utilized the upper inner fence as defined by the boundary point distance at the 75" percentile plus
1.5*IQR (Tukey 1977). This fence is used as a more robust normal outlier boundary than
maximum distance in Hausdorff calculations yielding a modified Hausdorff measure likely to be

less sensitive to measurement error.

Expectation-Maximization (EM) Comparison: Warfield et al. (2004) has developed an
EM algorithm, named STAPLE, for computing a probabilistic estimate of the ground-truth
segmentation from a group of expert segmentations, and a simultaneous measure of the quality
of each expert. As we applied their algorithm, this measure is a maximum likelihood estimate of
the underlying agreement among all of the skull-stripping methods (two manual plus four
automated both with and without bias correction). The underlying agreement is represented by
an unobserved or hidden skull-stripped prototype that divides all voxels into brain or non-brain
sets, a hidden, binary ground truth segmentation.

The iterative log likelihood maximization algorithm estimates specificity and sensitivity
parameters given a priori probabilities of hidden binary ground truth segmentation and initial
estimates of specificity and sensitivity. The sensitivity of an expert j expressed as a proportion
pj, where ({p;} € [0,1]), is the relative frequency of an expert decision that a voxel belongs to the
brain region when the ground truth for that voxel also indicates the same decision. The
specificity of an expert j expressed as a proportion qj, where ({q;} € [0,1]), is the relative
frequency of an expert decision that a voxel does not belong to the brain region when the ground
truth for that voxel also indicates the same decision. The a priori probabilities for all the voxels
for each slice of each subject tested are set to 0.5, indicating no initial knowledge about ground
truth. The initial estimates for sensitivity and specificity are all set to 0.9. The termination

criterion for convergence set the root mean square error to < 0.005.
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Statistical Summary: We employed mixed model analyses with the conventional alpha

level of 0.05 for a significant statistical effect. Partial eta-squared (%) values are provided as an
estimate of effect size. Between-subjects effects were examined for Image Set (Legacy,
Contemporary) and Diagnostic Group (YNC, ENC, DEPR, and AD). Univariate within-subjects
repeated measures effects were examined for Slice (Slices 1 through 6 as in Figure 1), Bias
Correction (with and without N3 correction), and Method (3dIntra, BET, BSE, and HWA).
These univariate analyses employed the Huynh-Feldt correction since sphericity could not be
assumed; logarithmic transforms of the same data produced similar findings. Both within and
between group post-hoc analyses contrasted pairs of each condition in sequence. For example,
post-hoc analyses of Diagnostic Group included three comparisons: YNC vs. DEPR, DEPR vs.
ENC, ENC vs. AD. To analyze agreement between raters we performed a Slice by Image Set by
Diagnostic Group mixed design analysis of variance using the JSC as the dependent variable.
Investigation of the influence of study variables on the correspondence of each automated
method with each manual outcome comparison required a Method by Bias Correction by Slice
by Image Set by Diagnostic Group mixed design analysis of variance with the JSC and the
modified Hausdorff measure analyzed as separate dependent variables. The latter ANOVA
design also was used to investigate the influence of study variables on EM-derived sensitivity
and specificity. EM analyses reported herein included all four automated methods and the two
manual outcomes.
RESULTS

Statistical Comparison of Two Manually Stripped Outcomes. When the two
anatomists’ manually stripped sections were compared, the grand mean JSC averaged across

slices was .938 (SE=.002). There were significant main effects of Slice (F(4.5, 108.5)=18.5,
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p<.001, partial 5°=.44) and Diagnostic Group (F(3,24)=7.2, p=.001, partial °=.47). Neither the
effect of Image Set nor any interactions reached significance (all p>.05; all partial 5°<.13). Post-
hoc, within-subjects contrasts suggested that the similarity coefficient was lowest for the two
mid-line sagittal sections (Figure 1, Slices 3-4) relative to the four lateral sections; these mid-line
sections were most variable between anatomists. As predicted, contrasts for Diagnostic Group
suggested that the similarity coefficients were lower for ENC and AD groups relative to the
YNC and DEPR subjects (F(3,24)=7.2, p=.001, partial #°=.47). Specifically, the coefficients for
the YNC and DEPR groups did not differ (p>.05) and neither did the ENC and AD groups
(p>.05). The similarity coefficients for the DEPR and ENC groups, however, were significantly
different (p=.001). In summary, the brain contours drawn by anatomists agreed less in the two
mesial slices and for data from the older diagnostic groups. These conditions that were more
difficult for manual skull-stripping may also prove difficult for the automated methods.
Qualitative Evaluation of All Outcomes. Qualitative review of all individual results
revealed that the outcomes differed in 1) the amount of cerebrospinal fluid (CSF) included in the
stripped volume; 2) the type of non-brain remaining in the stripped volume; and 3) the regions
and extent of brain tissue loss in the stripped volume. All methods included internal (e.g.,
ventricular) CSF in the resulting volume, which would allow future processing to evaluate
ventricular volume. HWA consistently included external CSF in the space between brain tissue

and the external dura (subarachnoid space; HWA in Figure 2).

INSERT FIGURE 2 ABOUT HERE

The type and extent of non-brain tissue remaining in the stripped volumes varied across
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methods, and the most common results are described here (Figures 2, 3, and 4). All methods
tended to leave some non-brain tissue in the posterior fossa (Figure 2). As intended by
developers, BSE volumes consistently include the spinal cord (Figure 2). BET tended to leave
muscle and other tissue in the mid-neck region (Figure 2-4). On some occasions, non-brain
included in 3dIntra results was found in similar areas, although to a lesser extent. HWA volumes
consistently included surrounding subarachnoid space and non-brain dura (Figures 2-4),
occasionally including tissue around the eyes (Figure 2), although HWA consistently removed
non-brain tissues in the neck regions.

The region and extent of brain tissue loss in stripped volumes also varied across methods
(Figures 3-4). HWA was sensitive to retaining brain volume. On one occasion, however, the
cerebellar volume was reduced. In general, the anterior frontal cortex, anterior temporal cortex,
posterior occipital cortex, and cerebellar areas were common locations for loss of cortical voxels
in other methods (3dIntra, BET, and BSE). Most cortical loss on stripped volumes of the
Contemporary datasets tended to be a thin layer of brain voxels in these areas, with BSE seeming
to result in the least amount of tissue loss. In the Legacy datasets, however, the loss of brain

tissue was more severe in some cases for these methods.

INSERT FIGURE 3 ABOUT HERE

INSERT FIGURE 4 ABOUT HERE

Statistical Comparisons of Automated Methods. The average elapsed processing time

for performing automated applications per dataset was calculated for each automated method
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based on the performance across all 32 datasets. 3dIntracranial required less than one minute
(53.9s; sd=10.5), BET re