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Abstract. This paper presents a novel active surface segmentation al-
gorithm using a multiscale shape representation and prior. We define a
parametric model of a surface using spherical wavelet functions and learn
a prior probability distribution over the wavelet coefficients to model
shape variations at different scales and spatial locations in a training
set. Based on this representation, we derive a parametric active surface
evolution using the multiscale prior coefficients as parameters for our op-
timization procedure to naturally include the prior in the segmentation
framework. Additionally, the optimization method can be applied in a
coarse-to-fine manner. We apply our algorithm to the segmentation of
brain caudate nucleus, of interest in the study of schizophrenia. Our vali-
dation shows our algorithm is computationally efficient and outperforms
the Active Shape Model algorithm by capturing finer shape details.

1 Introduction

The characterization of local variations in a shape population is an important
problem in medical imaging since a disease could affect only a portion of an
organs surface. For example, the surfaces of certain structures in the brain, such
as the caudate nucleus, contain sharp features. During the segmentation process
of such structures, this relevant high frequency information needs to be preserved
since it is relevant to further shape analysis [1].

Object segmentation with deformable models and statistical shape modelling
are often combined to obtain a robust and accurate segmentation [2, 3, 4, 5]. Active
shape models (ASMs) [3] are a standard technique for statistical segmentation
tasks based on a prior learned over a point distribution models (PDM): landmarks
on the shape are used as parameters and a joint prior probability distribution is
learned using principal component analysis (PCA) over the landmarks. However,
ASMs are often limited by the training set size and the inability of relatively few
eigenvectors to capture the full biological variations in the data [6].

To address this, a decomposable shape representation seems natural, where
shape descriptors are separated into groups that describe independent global
and/or local biological variations in the data, and a prior induced over each
group explicitly encodes these variations. Wavelet basis functions are useful for
such a representation since they range from functions with global support to
functions localized both in frequency and space, so that their coefficients can
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be used both as global and local shape descriptors, unlike spherical harmonics
or PCAs over landmarks which are global shape descriptors. The authors in [6]
used wavelet functions for curve representation and learned a prior over groups
of coefficients that are in proximity both in scale and space used for segmenta-
tion of 2D medical imagery, with convincing results. In [7], authors presented a
multiscale representation of 3D surfaces using conformal mappings and spherical
wavelets, and a novel multiscale shape prior shown to encode more descriptive
and localized shape variations than the PDM shape prior for a given training set
size. In this work, we present a segmentation framework using this 3D wavelet
representation and multiscale prior. To the best of our knowledge, this is the
first application of spherical wavelets for medical image segmentation.

In Section 2, we give an overview of the shape representation and shape prior
using spherical wavelets [7]. Both will be used in the segmentation framework
described in Section 3. In Section 4, we present our results on caudate datasets,
and in Section 5 we summarize our results and outline further research.

2 Shape Representation and Prior

2.1 Spherical Wavelets

In this work, we use biorthogonal spherical wavelets functions described in [8].
Spherical wavelets are scalar functions defined on surfaces which are topologically
equivalent to the unit sphere and equipped with a multiresolution mesh, created
by recursively subdividing an initial mesh so that each triangle is split into 4
“child” triangles at each new subdivision (resolution) level (see Figure 1). At each
resolution level, scaling and wavelet functions are constructed, with decreasing
support as the resolution increases (see Figure 1). For a mesh with N vertices, a
total of N functions constitute an L2 basis, which means that any finite energy
function defined on the mesh can be expressed in the basis. In matrix form, the
set of basis functions can be stacked as columns of a matrix Φ of size N×N where
each column is a basis function evaluated at each of the N vertices. Since the
spherical wavelet functions are biorthogonal, ΦT Φ �= Id (the identity matrix), so
the inverse basis Φ−1 is used for perfect reconstruction, since Φ−1Φ = Id.

Any finite energy scalar function evaluated at N vertices, denoted by the
vector F of size N × 1, can be transformed into a vector of basis coefficients
ΓF of size N × 1 using the Forward Wavelet Transform: ΓF = Φ−1F , and
recovered using the Inverse Wavelet Transform: F = ΦΓF .

Next, we describe how to represent shapes using spherical wavelets.

2.2 Data Description

To illustrate our work, we use a dataset of 29 left caudate nucleus1. The MRI
scans were hand-segmented by an expert neuroanatomist to provide ground truth
segmentations. Each manual segmentation defined a 3D surface extracted by
standard isosurface algorithm. We used 24 training shapes and 5 test shapes.
1 The details are: 1.5 Tesla GE Echospeed system, coronal SPGR images, 124 slices

of 1.5 mm thickness, voxel dimensions 0.9375 × 0.9375 × 1.5mm.
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2.3 Shape Representation

We first re-triangulate and register surfaces in the dataset so that they each have
the required multiresolution mesh to conduct the wavelet analysis and the same
mesh node on all shapes correspond to the same anatomical location. To achieve
this, we find a one-to-one mapping from each surface of the population to the
sphere, constrained by the requirements that 6 consistently chosen landmark
points2 on the shapes get mapped to the same point on the sphere [10]. Then,
by interpolating the resulting spherical maps at the vertices of a multiresolu-
tion triangulation of the sphere (shown in Figure 1(b)), we can re-triangulate
the original caudate surfaces in a consistent manner, providing a point-by-point
registration of all surfaces in the dataset and the required mesh for spherical
wavelet analysis. After registration, all shapes have N vertices and the ith shape
is represented by the vector Σi of size 3N (all x, then y then z coordinates). All
shapes are aligned with Procrustes [11] to find the mean shape Σ.

We encode the deviation from the mean for the ith shape with the signal
vi = Σi − Σ. We then transform vi into a vector of spherical wavelet basis
coefficients Γvi of size 3N with the forward spherical wavelet transform:

Γvi =

⎡
⎣

Φ−1 0 0
0 Φ−1 0
0 0 Φ−1

⎤
⎦

︸ ︷︷ ︸
Π−1

vi, (1)

Therefore a shape is transformed into wavelet coefficients by taking the forward
wavelet transform of the x, y and z deviation from the mean signal.

2.4 Multiscale Shape Prior

To build a prior that captures both global and local variations in the data, we first
reduce the dimensionality of the Γvi coefficients and keep only the coefficients
that encode relevant variations in the training data. We use a technique that
takes into account biorthogonality and estimates which coefficients can be trun-
cated (set to 0) without significantly affecting the function approximation [9].
In the caudate dataset, 74% of the coefficients were removed resulting in a re-
construction error smaller than 0.1% of the total shape size. This leads to a nice
compression property since the transform can match variations in the caudate
shape population using a small number of basis functions.

After truncation, we wish to decompose the set of non-truncated coefficients
(vector of size 3M) such that highly correlated coefficients are grouped together in
a band, with the constraint that coefficients across bands have minimum cross-
correlation as described in [7]. This models the joint probability distribution
of the coefficients by a product of smaller probability distributions over each
band, assumed to model independent shape variations at a particular scale.
We recursively cluster coefficients using spectral graph partitioning [12]. The

2 The landmarks are chosen automatically as described in [9].
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(a) level 0 (b) level 4 (c) wavelet, level 1 (d) wavelet, level 2

Fig. 1. (a-b) Recursive Partitioning of an octahedron (c-d) Visualization of wavelet
basis functions at various levels. The color corresponds to the value of the functions.

(a) Band 1 at scale
1, Lateral View 1

(b) Band 1 at scale
1, Lateral View 2

(c) Band 2 at scale
1, Lateral View 1

(d) Band 2 at scale
1, Lateral View 2

(e) Band 3 at scale
2, Lateral View 1

(f) Band 3 at scale 2,
Lateral View 2

(g) Color Scale

Fig. 2. 3 examples bands discovered by the prior color-coded on the mean shape. The
color shows the cumulative value of the wavelet basis functions that belong to that band.
Whiter areas represent surface locations with correlated variations across shapes.

visualization of resulting bands on the mean shape can in itself be interesting for
shape analysis (see Figure 2) by indicating which surface patches co-vary across
the training set. For example at scale 1, bands 1 and 2 indicate two uncorrelated
shape processes in the caudate data that make sense anatomically: the variation
of the head and of the body. It is interesting that bands have compact spatial
support, though this is not a constraint of our technique.

Once we discovered the bands, the final step is to estimate the probability
distribution of each band of coefficients via PCA. The eigenvectors and eigenval-
ues of lower scale bands represent relatively global aspects of shape variability,
whereas bands at higher scales represent higher frequency and more localized
aspects of shape variability. Additionally, our prior accurately encodes finer de-
tails even with small training sets, since if there are a total of B bands, there
exists on the order of L ≈ B(K − 1) eigenvectors, as opposed to just K − 1
eigenvectors when performing PCA on PDMs.

The full prior contains all the eigenvectors for all bands and all resolutions in
a matrix U of size 3M × L if there are L eigenvectors in total3. The vector of
basis coefficients Γvi is then :

Γvi = Γvi + Uαvi (2)
3 Each column of U is an eigenvector of a particular band with non-zero entries only

for coefficients that were assigned to that band, see [7, 9] for more details.
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where αvi (size L × 1) represents the coordinates of the wavelet coefficients of
that shape in the eigenvector space.

3 Segmentation with the Spherical Wavelet Prior

In order to exploit the multiscale prior, we derive a parametric surface evolution
equation by evolving the weights α directly. As the surface evolves to fit the
image data, we constrain the weights α to remain within ±3 standard deviation
of their values observed in the training set. The parameters of our model are
the shape parameters α, as well as pose parameters that accommodate for shape
variability due to a similarity transformation (rotation, scale, translation) which
is not explicitly modelled with the shape parameters.

3.1 Pose Parameters

Given a surface mesh with N vertices Σ : [1, ..., N ] → R
4, expressed in ho-

mogeneous coordinates so that a mesh point is denoted by Σ(u) = xu =
[xu, yu, zu, 1]T , a transformed surface Σ̃ is defined by:

Σ̃(u) = T [p]Σ(u). (3)

The transformation matrix T [p] is the product of a translation matrix with 3
parameters tx, ty, tz, a scaling matrix with 1 parameter s and a rotation matrix
with 3 parameters wx, wy , wz, using the exponential map formulation [13].

3.2 Shape Parameters

A surface point Σ(u) can be represented in the wavelet basis using (1) and (2):

Σ(u) = Σ(u) + H (ΠuΓ ) = Σ(u) + H
(
Πu(Γ + Uα)

)
(4)

where the function H : [3N × 1] → [4 × N ] rearranges a matrix to have correct
homogeneous coordinates and Πu are all the basis functions in Π evaluated at
point xu. The parameters α are the shape parameters of our model.

3.3 Segmentation Energy

We use a region-based energy to drive the evolution of the parametric deformable
surface for segmentation. With region-based energies, the force that influences
the evolution of a contour depends on more global statistical information [4, 5].
We employ the discrete version of a segmentation energy presented in [5]:

E(α,p) :=
∑

x̃∈R̃

L(x̃)Δx̃, (5)

where R̃ is the region inside the evolving surface Σ̃ and the force is L(x̃) =
− log( PI(I(x̃))

PO(I(x̃))) where I(x̃) is the image intensity at a point x̃ located inside the

region R̃ of the evolving surface, PI(I(x̃)) is the probability that a point x̃ with
intensity I(x̃) belongs to the interior of an object to be segmented in the image,
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and PO is the probability that the point belongs to the exterior of the object.
The segmentation energy is minimized when the surface evolves to include points
that have maximum L (points that have a higher PI than PO). To estimate the
probability density functions PI and PO from a training set, we collect sample
voxel intensity values inside and outside the segmented shapes in a neighborhood
of width 10 pixels around the boundary and use Parzen windows [11].

The surface evolution is defined by a gradient of Σ that minimizes the energy
in terms of the pose p and shape parameters α. We use the area formula, and
discrete divergence theorem to express the region sum in (5) as a surface sum [9].
Using the notation of (4), the gradient with respect to each pose parameter
pk ∈ p is given by:

dE

dpk
=

∑

x̃u∈Σ̃

< L(x̃u)
dT [p]
dpk

Σ(u), Ñ > Δx̃u, (6)

Ñ is the inward normal of surface point x̃u expressed in homogeneous coordinates
and the image force L is evaluated at points on the surface boundary of Σ̃.

The gradient flow with respect to each shape parameters αk ∈ α is given by:

dE

dαk
=

∑

x̃u∈Σ̃

< L(x̃u)T [p]H(ΠuU(:, k)), Ñ > Δx̃u (7)

where U(:, k) selects the kth eigenvector corresponding to αk.

3.4 Parameter Optimization Via Multiresolution Gradient Descent

We can now use the gradient equations (6) and (7) to conduct a parameter
optimization via gradient descent. Explicitly, the update equations are:

p(t + 1) = p(t) + δp
t

dE

dp
(8) α(t + 1) = α(t) + δα

t

dE

dα
(9)

where δα
t and δp

t are positive step size parameters and α(t + 1), p(t + 1) denote
the values of the parameters α and p at the (t+1)th iteration. We start with an
initial shape and iterate between (8) and (9). We update the α parameters in a
multiresolution fashion. Since each shape parameter αi corresponds to a band at
a wavelet resolution j, we first only update α coefficients corresponding to the
coarsest level bands (j = 1). Once α changes less than a threshold value vα, we
add the α parameters of the next resolution level to the gradient and update (9).
This results in a more stable segmentation since few global parameters are first
updated when the shape is far from the solution, and more localized parameters
are added as the shape converges to the solution.

We start with (8) until (pt+1 − pt) < vp where vp is a threshold value. We
then run (9) for 1 iteration, and iterate the process. At each α iteration, we
ensure that the value of the α parameters stays within ±3 standard deviation of
the observed values in the training set. After each iteration, the updated shape
and pose parameters are used to determine the updated surface.
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(a) ASM, iter=1 (b) ASM, iter=25 (c) ASM, iter=122

(d) Mscale, iter=1 (e) Mscale, iter=96,
levels 1-2 active

(f) Mscale, iter=122,
levels 1-5 active

Fig. 3. Surface Evolution using the Ground Truth labelmap as the image force for
ASM (top rown) and Mscale (bottom row) algorithms. The ground truth is shown in
light gray, the evolving surface in dark grey.

4 Results

We have applied our algorithm to the segmentation of caudate nucleus shapes
from MRI scans as previously described. We learned a shape prior from a training
set of 24 shapes. We use spherical wavelet basis functions of resolution up to
j = 5. In total, we obtained 16 bands in the shape prior. We learned the mean
position pm of the caudate shapes in the MRI scans (in patient coordinate space).
To initialize the segmentation, we use the mean caudate shape learned during
the training phase and positioned it at position pm in the scan to be segmented.
We then evolved the surface according to the process described in Section 3. The
step size parameters were δα

t = 0.5, δp
t = 0.001 for translation and δp

t = 0.0001
for scale and rotation and vp = vα = 0.02.

To measure the discrepancy between the segmented shape (S) and the ground
truth (G) (obtained from the hand-segmented labelmaps), we use the Hausdorff
distance H(G, S) that measures the maximum error between the boundary of two
shapes G and S, as well as the partial Hausdorff distance Hf (G, S) that measures
the f% percentile of the Hausdorf distance. We compare our algorithm (called
Mscale) to the standard ASM algorithm that uses the PDM shape prior [3],
using the same training, testing shapes and keep 100% of the eigenvectors.

To validate our algorithm, we first use the Ground Truth labelmap as the
image force in Equations (6, 7) by replacing the log expression with a value of 1
inside the (known) object and −1 outside. The end goal is to validate whether the
surface evolution converges to the right solution, given perfect image information.
Since we are evolving in the space of the shape prior, the discrepancy between
the ASM and Mscale algorithm is due to the expressiveness of the shape prior.
Figure 3 shows the result for test shape 5. The final segmentation with the
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(a) ASM, iter=1 (b) ASM, iter=32 (c) ASM, iter=202

(d) Mscale, iter=1 (e) Mscale, iter=150,
levels 1-2 active

(f) Mscale, iter=202,
levels 1-5 active

Fig. 4. Surface Evolution using the density estimation as the image force for ASM
(top rown) and Mscale (bottom row) algorithms. The ground truth is shown in light
gray, the evolving surface in dark grey.

Table 1. Hausdorff (H) and partial Hausdorff (Hf ) distance for the five test shapes,
for the Multiscale (Mscale) and Active Shape Model segmentation algorithm.

Error Measure Segmentation Alg. N=1 N=2 N=3 N=4 N=5 Mean
H95 (mm) Mscale 4.82 2.22 3.03 3.04 3.95 3.16

ASM 5.51 3.24 3.98 3.18 4.26 3.83
H (mm) Mscale 5.89 4.06 3.75 5.23 5.57 4.85

ASM 9.79 5.68 6.33 7.22 6.06 7.07

multiscale prior captures more of the shape and finer details than the ASM
segmentation. Furthermore, we see that as the resolution level is increased for
the α parameters, the Mscale segmentation is able to capture finer details.

We then validated the full segmentation algorithm, using the proposed im-
age force in Equation 5. The results of the validation for both algorithms are
shown in Table 1. For each test shape, the lowest error among the two algo-
rithms is in boldface. The Mscale algorithm consistently outperforms the ASM
algorithm. Figure 4 qualitatively compares the segmentation of Test shape 3 for
both algorithms. The Mscale algorithm is more accurate and captures finer de-
tails, especially at the tail of the shape. We note that the segmentation is not
fully accurate due to non-perfect image statistics. Our algorithm runs under 5
minutes on a Pentium IV 2GHz using non-optimized MATLAB code.

5 Conclusions and Future Work

We presented a computationally efficient segmentation algorithm based on a
spherical wavelet shape representation and multiscale shape prior. Our results
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show that the proposed segmentation algorithm outperforms standard ASM by
capturing finer details during the evolution, due to the expressiveness of the
multiscale prior that captures a wider range of global and local variations in the
training set than the ASMs prior. We plan to validate the algorithm on other
medical structures, in particular other brain structures involved in diagnosis of
schizophrenia. Additionally, we plan to investigate the usefulness of the spherical
wavelet shape representation and multiscale prior for shape classification.
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