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Abstract 
The Biomedical Informatics Research Network (BIRN) is a National Institutes of Health 
(USA) initiative that fosters distributed collaborations in biomedical science by utilizing 
information technology innovations. Morphometry BIRN is one of its testbeds and has the 
goal to develop the ability to conduct clinical imaging studies across multiple sites, to analyze 
structural imaging data with the most powerful software regardless of development site, and 
to test new hypotheses on large collections of subjects with well-characterized image and 
clinical data. Through large-scale analyses of patient population data acquired and pooled 
across sites, we are investigating neuroanatomic correlates of Alzheimer’s Disease 
Depression and Mild Cognitive Impairment subjects. This paper describes progress in multi-
site image calibration and in software integration for multi-site image processing. 

 
 
1. Introduction 
 
 The Biomedical Information Research Network (BIRN, www.nbirn.net) is a National 
Institute of Health consortium in the USA comprised of 26 research groups that aims to create 
technical infrastructure and guidelines to enable acquisition, databasing, sharing, analysis and 
mining of multi-institutional biomedical data [1]. In it’s first phase BIRN is focused on 
clinical neuroscience through the coordinated work of the following testbeds: Functional 
Imaging Research in Schizophrenia Testbed BIRN (integration and analysis of functional 
MRI data), Mouse BIRN (integration of multi-scale neuroimaging and genetic data from 
mouse models of neurological and psychiatric disorders), BIRN Coordinating Center (support 
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for network infrastructure, grid computing, data integration, interaction environments and 
general coordination of the project), and Brain Morphometry BIRN (discussed in this paper).  
 The Morphometry BIRN’s goal is to develop the ability to conduct clinical imaging studies 
across multiple sites, to analyze imaging data with the most powerful software regardless of 
development site, and to test new hypotheses on large collections of subjects with well 
characterized image and clinical data. Through large-scale analyses of patient population data 
acquired and pooled across sites, we are investigating neuroanatomic correlates of 
Alzheimer’s Disease, Depression and Mild Cognitive Impairment subjects. Currently, the 
Morphometry BIRN sites are: Massachusetts General Hospital (MGH, lead site), Brigham & 
Women's Hospital (BWH), Johns Hopkins University (JHU), Washington University in St. 
Louis (WashU), Massachusetts Institute of Technology (MIT), Duke University, University 
of California San Diego (UCSD), Los Angeles (UCLA) and Irvine (UCI).  
 Challenges of the BIRN effort include calibrating imaging data acquired from multiple sites 
and integrating software analysis and visualization tools developed at different sites. In this 
paper we summarize results of work on these fronts. 
 
 
2. Multi-Site Structural MRI Calibration: gradient-distortion correction 
 
2.1. Introduction 
 
 One of the challenges of both multi-site and longitudinal neuroimaging studies is to 
maximize MR image reproducibility over time. In other words, to minimize technology 
related variability in the images, which limits the power for following the progression of 
disease and finding biomarkers. This motivates the development and application of 
procedures both to standardize acquisition parameters and to estimate and correct for the error 
introduced by uncontrolled factors, particularly when data from multiple scanners and MRI 
vendors are combined. An important task in this effort is to accurately correct for gradient-
induced distortions in order to allow cross-site comparisons of morphometry results, 
minimizing dependence on site-specific factors. Here we present results from a phantom and 
human study that shows how image reproducibility can be significantly improved when with 
gradient distortion correction. To keep our results independent of brain morphometry tools, 
here we focus only on the reproducibility of image intensity for the human data 
 
 
2.2 Materials and Methods 
 
 To quantitatively characterize the extent of image distortions due to gradient non-
linearities, phantom and test-retest human data were collected from multiple sites having 
different commercial 1.5T whole body scanners used for functional and structural MRI 
studies: General Electric Signa CVi/NVi 1.5T at Duke and BWH (CRM gradients with max 
strength, slew rate = 40mT/m, 150T/m/s), the same vendor but different gradients for UCSD 
(22mT/m, 120mT/m/ms), and Siemens Medical Systems Magnetom Sonata 1.5T from MGH 
(Sonata gradients, 40mT/m, 200T/m/s). T1-weighted structural MRI data used for 
morphometry were acquired [2]. The distortion correction consisted of two steps. First, a 
displacement vector map was calculated using the spherical harmonic coefficients from the 
vendor’s true gradients. Second, the displacement and intensity correction maps were applied 
to the original image.  
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2.3. Results  
 
 Figure 2.1 summarizes the group results for the phantom scans across the 4 sites (MGH, 
BWH, Duke and UCSD), showing how the multi-site diameter errors (measured diameter 
relative to true diameter) are significantly reduced after distortion correction (p<0.001). At the 
phantom edges the uncorrected diameter errors were about (5+-2)%, whereas for the 
corrected images the deviation from the true diameter was (0.5+-0.08)%. The human results 
(Fig. 2.2) showed that image intensity fluctuations arising from voxel distortions can be 
signifcantly reduced both in within-site (10% reduction in mean error) and across-site (16% 
reduction) comparisons.  
 
2.4. Conclusions 
 
 The multi-site phantom results validated the gradient distortion correction method, 
showing that the geometric distortions of a phantom can be significantly reduced. The test-
retest human data, within- and across-site results, showed that image intensity reproducibility 
is significantly improved with distortion correction. As expected, the correction effects are 
strongest in across-site comparisons. This is consistent with the fact that in multi-site 
scanning the variability in subject’s positioning is added to the variability in distortion fields 
from the different sites. We also found that the differences in within-site reproducibility errors 
between the sites could be explained by reproducibility errors in the positioning of the 
subjects. In conclusion, correction for gradient non-linearity errors has the potential for 
improving the accuracy of morphometric analysis in longitudinal and multi-site imaging 
studies. These corrections, however, do not account for all the sources of image intensity 
variability, which are likely to include inhomogeneities of the B1 RF pulses. 
 
3. Developing a shape analysis processing pipeline 
 
3.1. Introduction 
 
 Brain morphometric analysis and visualization tools from multiple sites are being 
integrated to operate together on data acquired at different sites. The goal is to develop a 
uniform platform that will enable clinical scientists to seamlessly access, visualize, process 
and store imaging and clinical data, as well as analyses results. To drive such developments 
we started with focused efforts. One of them, which we describe here, is the development of a 
shape analysis pipeline that can enable pattern classification of hippocampal shape for 
research in Alzheimer’s Disease. In this example, imaging data acquired at one site (WashU) 
is analyzed by integrated morphometry tools from two other different sites (MGH and JHU), 
and a visualization tool from a fourth site (BWH) has been extended to enable the viewing of 
all the derived results on a single visualization platform. 
 
3.2. Materials and Methods 
 
 Figure 3.1 shows a schematic representation of the data flow in the shape analysis 
pipeline. 45 subjects (21 nondemented controls, 18 very mild Alzheimer's Disease, 6 semantic 
dementia) were scanned using high resolution T1-weighted structural MRI at Washington 
University in Saint Louis. Then the anonymized scans were analyzed at MGH's Martinos 
Center using Freesurfer [3]. The resulting segmented data sets were aligned and processed at 
JHU's Center for Imaging Science (CIS) using the Large Deformation Diffeomorphic Metric 
Mapping (LDDMM) tool [4]. Briefly, LDDMM computes the diffeomorphic transformation 
of one binary image I0 to another I1 along with the metric distance between them generated 
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by the geodesic connection between the images through the group of infinite dimensional 
diffeomorphisms (which is the generalization of rotations, translations and scale group), the 
necessary group for studying shape. 
 TeraGrid resources were used for the LDDMM computations. Clusters of 70 concurrent 
LDDMM processes were running for 8 hours each on nodes of the TeraGrid.   
 From the 4050 LDDMM comparisons of left and right hippocampal shapes, a statistical 
analysis of the two-45x45 matrix of metric distances was done. First, these distances were 
non-linearly mapped to Rd space by a multidimensional scaling (MDS) [5] to minimize the 
inter-point distance distortion in Euclidean space. The classical MDS produced a dL+dR 
dimensional feature matrix, which was used to perform classification via linear discriminant 
analysis (LDA) [6]. The performance criteria of the classification measures the instances of 
misclassification with leave-one-out cross validation. 
 
3.3. Results  
 
 Integration code developed at MGH, JHU and BWH facilitated the exchange and 
visualization of morphometric results (subcortical segmentations and shape vector fields). 
Figure 3.2 shows a 2D scatter plot generated by LDA. As it can be seen, class-specific 
information (subject diagnosis) can be extracted from the shape analysis results performed by 
LDDMM on hippocampus shapes that were previously segmented by Freesurfer. 
 
3.4. Conclusions 
 
 The extensibility of Freesurfer and LDDMM morphometric tools to operate seamlessly 
on data that was acquired at neither the MGH nor the JHU sites is noteworthy. Pattern 
classification of metric distances provides a powerful means of distinguishing shapes and 
providing the neuroanatomist an increased understanding of diseases and disorders with 
greater statistical power.  
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Figure 2.1: Phantom results. A) Schematic representation of the distortion correction 
process. B) Relative errors in phantom diameter measures (image measure divided true 
diameter) from MGH, BWH, Duke and UCSD sites, with (blue) and without (green) 
gradient distortion correction, as a function of the distance from magnet's iso-center 
along the z-axis (mm). The correction improves geometric reproducibility and accuracy. 
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Figure 2.2: Distortion correction effects on image intensity reproducibility of human 
structural data. A) Voxel-based variability maps (standard deviation divided by the 
voxel mean), for a single subject test-retest within site (top, two sessions) and the same 
subject test-retest across sites (bottom, three sessions). Intensity variations larger than 
8% are shown in red overlaid on one of the subject's structural scan. B) Distortion 
correction effects on the histograms of the across-site variability maps. Mean 
reproducibility errors of image intensity are significantly reduced. 

 5/6



 6/6

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 BIRN 
Virtual Data Grid

Data  
Upload 1

WashU 
Archives 

MGH  
Freesurfer 

segmentations 

JHU 
Large Deformation  

Diffeomorphic  
Metric Mapping 

Shape Analysis of 
Segmented Structures BWH 

3D Slicer 
Visualization of 

segmentation and 
shape analysis 

results 
TeraGrid 

High  performance 
computing 

3

4

2

 
 
 

De-identification

 
 
 
 
 
 
Figure 3.1: Dataflow for the shape analysis-processing pipeline. 1) Structural MRI data 
upload from WashU 2) Semi-automated subcortical segmentation (MGH). 3) Shape 
analyses of segmented hippocampus data (JHU). 4) Visualization of combined 
morphometric results (BWH). 
 

 
Figure 3.2: 2D scatter plot generated by LDA. Class labels are represented by Non-
demented Controls (1), Alzheimer’s Disease (2) and Semantic Dementia (3) 
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