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Abstract. Traditional techniques for statistical fMRI analysis are often
based on thresholding of individual voxel values or averaging voxel val-
ues over a region of interest. In this paper we present a mixture-based
response-surface technique for extracting and characterizing spatial clus-
ters of activation patterns from fMRI data. Each mixture component
models a local cluster of activated voxels with a parametric surface func-
tion. A novel aspect of our approach is the use of Bayesian nonparametric
methods to automatically select the number of activation clusters in an
image. We describe an MCMC sampling method to estimate both pa-
rameters for shape features and the number of local activations at the
same time, and illustrate the application of the algorithm to a number
of different fMRI brain images.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a widely used technique to
study activation patterns in the brain while a subject is performing a task. Voxel-
level activations collected in an fMRI session can often be summarized as a β
map, a collection of β coefficients estimated by fitting a linear regression model
to the time-series of each voxel. Detection of activation areas in the brain using β
maps is typically based on summary statistics such as the mean activation values
of particular brain regions, or detection of significant voxels by thresholding
based on statistics such as p-values computed at each voxel. These approaches do
not directly model spatial patterns of activation—detection and characterization
of such patterns can in principle provide richer and more subtle information
about cognitive activity and its variation across individuals and machines.

In earlier work on spatial activation patterns, Hartvig [1] represented the
activation surface in fMRI as a parametric function consisting of a superposi-
tion of Gaussian-shaped bumps and a constant background level, and used a
stochastic geometry model to find the number of bumps automatically. This
work focused on extracting activated voxels by thresholding after the model pa-
rameters were estimated, rather than characterizing activation patterns directly.
Penny and Friston [2] proposed a mixture model similar to that described in this



paper, with each mixture component representing a local activation cluster. In
prior work we proposed a response surface model that represents an activation
pattern as a superposition of Gaussian shaped parametric surfaces [3].

While the approaches proposed in [2] and [3] provide richer information about
spatial activation than voxel-based methods, they both have the drawback that
users have to determine the number of activation clusters manually by looking
at individual images. While this may be feasible for analyzing relatively small
brain regions for a small number of images, in a large scale analysis of brain
activation patterns automatic detection of the number of bumps becomes an
important pragmatic issue.

In this paper we take a nonparametric Bayesian approach and use Dirichlet
processes [4] to address the problem of automatically determining the number of
activation clusters. Rasmussen [5] illustrated how the Dirichlet process could be
used as a prior on mixing proportions in mixture of Gaussian models to auto-
matically determine the number of mixture components from data in Bayesian
manner. This approach is sometimes referred to as the infinite mixture model

since it does not a priori specify a finite number of mixture components but
instead allows the number to be determined by the data.

The primary novel contribution of this paper is the application of the general
framework of infinite mixtures and Bayesian inference to the specific problem of
characterizing spatial activation patterns in fMRI. We model spatial activation
patterns in fMRI as a mixture of experts with a constant background component
and one or more activation components. An expert assigned to each “activation
cluster” models each local activation cluster with a parametric surface model
(similar to the surface model we proposed in [3] and detailed in the next sec-
tion) with free parameters for the heights and center locations of the “bumps.”
Combining this mixture of experts model with a Dirichlet process prior we can
estimate the shape parameters and the number of bumps at the same time in a
statistical manner, using the infinite mixture model framework.

The paper is organized as follows. In Sect. 2, we introduce a mixture of
experts model for spatial activation patterns, describe inference procedures for
this model and extend it using an infinite mixture model to find the number
of activation clusters automatically from data. In Sect. 3, we demonstrate the
performance of our model on fMRI data for two individuals collected at two
different sites. Sect. 4 concludes with a brief discussion on future work.

2 Activation Surface Modeling

2.1 The mixture of experts model

We develop the model for the case of 2-dimensional slices of β maps—the 3-
dimensional case can be derived as an extension of the 2-dimensional case, but
is not pursued in this paper. Under the assumption that the β values yi, i =
1, . . . , N (where N is the number of voxels) are conditionally independent of
each other given the voxel position xi = (xi1, xi2) and the model parameters, we



model the activation yi at voxel xi with a mixture of experts model:

p(yi|xi, θ) =
∑

c∈C p(yi|c,xi)P (c|xi), (1)

where C = {cbg, cm, m = 1, . . . , M − 1} is a set of M expert component labels
for a background component cbg and M − 1 activation components (the cm’s).
The first term on the right hand side of Equation (1) defines the expert for
a given component. We model the expert for an activation component cm as
a Gaussian-shaped surface centered at bm with width Σm and height km as
follows.

yi = kmexp
(

−(xi − bm)′(Σm)
−1

(xi − bm)
)

+ ε, (2)

where ε is zero-mean additive noise. The background component is modeled
as having a constant activation level µ with additive noise. We use the same
Gaussian distribution with mean 0 and variance σ2 for the noise term ε for both
types of experts.

The second term in Equation (1) is known as a gate function in the mixture of
experts framework—it decides which expert should be used to make a prediction
for the activation level at position xi. Using Bayes’ rule we can write this term
as

P (c|xi) =
p(xi|c)πc

∑

c∈C p(xi|c)πc

, (3)

where πc is a class prior probability P (c). p(xi|c) is defined as follows. For acti-
vation components, p(xi|cm) is a normal density with mean bm and covariance
Σm. bm and Σm are shared with the Gaussian surface model for experts in
Equation (2). This implies that the probability of activating the mth expert is
highest at the center of the activation and gradually decays as xi moves away
from the center. p(xi|cbg) for the background component is modeled as having
a uniform distribution of 1/N for all positions in the brain. If xi is not close to
the center of any activations, the gate function selects the background expert
for the voxel.

Putting this model in a Bayesian framework we define priors on all of the
parameters. The center of activation bm is a priori uniformly distributed over
voxels that have positive β values within a predefined brain region of interest. We
use an inverse Wishart(ν0, S0) prior for the width parameter Σm for activation,
and a Gamma(a0k, b0k) prior for the height parameter km. A normal distribu-
tion N(0, σ0

2) is used as a prior on the background mean µ. σ2 for noise is
given a Gamma(a0, b0) prior. A Dirichlet distribution with a fixed concentration
parameter α is used as a prior for class prior probabilities πc’s.

2.2 MCMC for mixture of experts model

Because of the nonlinearity of the model described in Sect. 2.1, we rely on
MCMC simulation methods to obtain samples from the posterior probability



density of parameters given data. In a Bayesian mixture model framework it
is common to augment the unknown parameters with the unknown compo-
nent labels for observations and consider the joint posterior p(θ, c|y,X) where
y, X and c represent a collection of yi’s, xi’s and ci’s for i = 1, . . . , N and
θ = {µ, σ2, {bm, Σm, km}, m = 1, . . . , M − 1}. Notice that the mixing propor-
tions πc’s are not included in θ and dealt with separately later in this section.
During each sampling iteration the parameters θ and component labels c are
sampled alternately.

To obtain samples for parameters θ, we consider each parameter θj in turn
and sample from

p(θj |θ−j , c,y,X) ∝ p(y|c,X, θ)p(X|c, θ)p(θj),

where the subscript −j indicates all parameters except for θj . Gibbs sampling
is used for the background mean µ. The width parameter Σm for activation can
be sampled using the Metropolis-Hastings algorithm with an inverse Wishart
distribution as a proposal distribution. For all other parameters the Metropolis
algorithm with a Gaussian proposal distribution can be used.

We sample the component label ci as follows. Given a Dirichlet(α/M, . . . , α/M)
prior for the πc’s we can integrate out the πc’s to obtain

p(ci = j|c−i, α) =
n−i,j + α/M

N − 1 + α
, (4)

where n−i,j indicates the number of observations excluding yi that are associated
with component j [5]. This is combined with the likelihood terms to obtain the
conditional posterior for ci:

p(ci|c−i, θ,y,X, α) ∝ p(yi|ci,xi, θ)p(xi|ci, θ, α)P (ci|c−i, α).

We can sample the component label ci for observation yi from this distribution.

2.3 The infinite mixture of experts model

In the previous sections, we assumed that the number of components M was
fixed and known. For an infinite mixture model, with a Dirichlet process prior
[5], in the limit as M → ∞ the class conditional probabilities shown in Equation
(4) become

components where n−i,j > 0: P (ci = j|c−i, α) =
n−i,j

N − 1 + α
(5)

all other components combined: P (ci 6= ci′ for all i′ 6= i|c−i, α) =
α

N − 1 + α
.(6)

When we sample component label ci for observation yi in a given iteration of
MCMC sampling, if there are any observations associated with component j
other than yi, Equation (5) is used and this component has a non-zero prior
probability of being selected as ci. If yi is the only observation associated with



label j, this component is considered as unrepresented and a new component
and its parameters are generated based on Equation (6) and prior distributions
for the parameters. Once all observations are associated with components, the
parameters of these components can be sampled in the same way as in the finite
mixture of experts model assuming M is the number of components represented
in the current sample of c.

The class conditional prior probabilities in the infinite mixture model above
(Equations (5) and (6)) are not dependent on the input positions xi, whereas
the gate function for P (c|xi) is a function of xi. To allow for dependence on the
gate function we separate the input independent term from the gate function by
writing it as in Equation (3), and apply the infinite mixture model to the second
term of Equation (3).

To sample from the class conditional posterior, we use Algorithm 7 from Neal
[6] that combines a Metropolis-Hastings algorithm with partial Gibbs sampling.
In the Metropolis-Hastings step, for each ci if it is not a singleton, we propose
a new component with parameters drawn from the prior and decide whether to
accept it or not based on p(yi|ci,xi, θ)p(xi|ci, θ). If it is a singleton, we consider
changing it to other classes represented in the data. This Metropolis-Hastings
algorithm is followed by partial Gibbs sampling for labels to improve efficiency.

At the start of the MCMC sampling the model is initialized to one back-
ground component and one or more activation components. Because we are
interested in deciding the number of activation components, whenever a deci-
sion to generate a new component is made, we assume the new component is
an activation component and sample appropriate parameters from their priors.
If the number of voxels associated with a component at a given iteration is 0,
the component is removed. It is reasonable to assume that not all regions of the
brain are activated during a task and, thus, that there will always be some vox-
els in the background class. To prevent the sampling algorithm from removing
the background component, the algorithm assigns the nlabeled voxels with the
lowest β values in the image to the background component, and does partially
supervised learning with these labeled voxels. In this case we are interested in
sampling from the joint posterior of the parameters and the labels for unlabeled
data p(cunlabeled, θ|y,X, clabeled).

In general the number of components depends on the concentration parame-
ter α of the Dirichlet process prior. It is possible to sample α from the posterior
using a gamma distribution as a prior on α [7]. In our experiments, we found
fixing α to a small value (α < 5) worked well.

3 Experimental Results

We demonstrate the performance of our algorithm using fMRI data collected
from two subjects (referred to as Subjects 1 and 2) performing the same senso-
rimotor task. fMRI data was collected for each subject at multiple sites as part
of a large multi-site fMRI study1 (here we look at data from the Stanford (3T)

1 http://www.nbirn.net



and Duke (4T) sites). Each run of the sensorimotor task produces a series of 85
scans that can be thought of as a large time-series of voxel images. The set of
scans for each run is preprocessed in a standard manner using SPM99 with the
default settings. The preprocessing steps include correction of head motion, nor-
malization to a common brain shape (SPM EPI canonical template), and spatial
smoothing with an 8mm FWHM (Full Width at Half-Maximum) 3D Gaussian
kernel. A general linear model is then fit to the time-series data for each voxel
to produce β maps. The design matrix used in the analysis includes the on/off
timing of the sensorimotor stimuli measured as a boxcar convolved with the
canonical hemodynamic response function.

The hyperparameters for prior distributions are set based on prior knowledge
on local activation clusters. σ2

0
, for the prior on the background mean, is set to

0.1 and the noise parameter σ2 is given a prior distribution Gamma(1.01, 1) so
that the mode is at 0.01 and the variance is 1. The prior for height km of an
activation component is set to Gamma(2,2) based on the fact that maximum β
values in this data are usually around 1. The width of an activation component
Σm is given an inverse-Wishart prior with degree of freedom 4. The 2 × 2 scale
matrix is set to variance 8 and covariance 1. The concentration parameter α of
the Dirichlet process prior is set to 1.

To initialize the model for posterior sampling, we use a heuristic algorithm to
find candidate voxels for local activation centers and assign a mixture component
to each of the candidates. To find candidate voxels, we take all of the positive
voxels of a cross section, and repeatedly select the largest voxel among the voxels
that have not been chosen and that are at least four voxels apart from the previ-
ously selected voxels, until there are no voxels left. The location and height pa-
rameters of the component are set to the position and the β value of the candidate
voxel. The width parameters are set to the mean of the prior on width. As men-
tioned earlier we fix the labels of nlabeled = 10 voxels with the lowest β values as

(a) (b) (c)

Fig. 1. Results for subject 2, data from Stanford MRI machine: (a) raw data (β maps)
for a cross section (z = 48) (b) SPM showing active voxels colored white (p ≤ 0.05) (c)
Predictive values for activation given the estimated mixture components with height
km > 0.1. The width of the ellipse for each bump is 1 standard deviation of the width
parameter for that component. The thickness of ellipses indicates the estimated height
km of the bump.
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Fig. 2. The number of activation
components as a function of MCMC
iterations for the data in Fig. 1.

background, and perform partially super-
vised learning with these labeled voxels.

The MCMC sampler is run for 3000
iterations. The heights of the estimated
bumps range between 0.003 and 1.2. Since
low heights are likely to correspond to
weak background fluctuations we display
only those activation components above a
certain threshold (height km ≥ 0.1).

We fit the infinite mixture of experts
model to a β map cross section (at z = 48)
for subject 2 on the Stanford MRI ma-
chine, and summarize the results in Fig. 1. After 3000 iterations of the sampling
algorithm using the β map shown in Fig. 1(a), we sample posterior predictive
values for β values at each voxel using the last 1000 samples of the parame-
ters. The medians of these samples are shown in Fig. 1(c) as predicted β values.
Parameters from a single sample are overlaid as ellipses centered around the
estimated activation centers bm. The model was able to find all of the signifi-
cant clusters of activation in the raw data even though the number of activation
components was unknown a priori to the learning algorithm. Most of the larger
activation clusters are in the auditory area in the upper and in the lower middle
part of the images, consistent with the activation pattern of sensorimotor tasks.
For comparison, in Fig. 1(b) we show the activated voxels found by thresholding
the z map (normalized beta-map) with p ≤ 0.05. We can see that the thresh-
olding method cannot separate the two bumps in the lower middle part of Fig.
1(a), and it completely misses the activations in the center of the image.

In Fig. 2 we assess the convergence of the Markov chain based on the number
of active components at each iteration. The initially large number of components
(from the heuristic initialization algorithm) quickly decreases over the first 300
iterations and after around 900 iterations stabilizes at around 22 to 25 compo-
nents.

Fig. 3 shows results for a cross section (at z = 53) of the right precentral
gyrus area for subject 1 collected over two visits. The β maps are shown on

(a) (b) (c)

Fig. 3. Results from subject 1 at Duke. (a) Visit 1, run 1, (b) visit 2, run 1, and (c) visit
2, run 2. β maps for a cross section (z = 53) of right precentral gyrus and surrounding
area are shown on the left. On the right are shown predictive values for activation given
the mixture components estimated from the images on the left. The width of the ellipse
for each bump is 1 standard deviation of the width parameter for that component. The
thickness of ellipses indicates the estimated height km of the bump.



the left (Fig. 3(a) for visit 1, and Fig. 3(b)(c) for two runs in visit 2) and the
estimated components on the right given the images on the left. Even though
the β maps in Fig. 3(a)-(c) were collected from the same subject using the same
fMRI machine there is variability in activation across visits such as the bump
on the lower left of the β map for visit 2 in addition to the bigger bump at
the center of β maps common to both visits. This information is successfully
captured in the estimated activation components.

4 Conclusions

We have shown that infinite mixtures of experts can be used to locate local
clusters of activated voxels in fMRI data and to model the spatial shape of
each cluster, without assuming a priori how many local clusters of activation
are present. Once the clusters are identified the characteristics of spatial activa-
tion patterns (shape, intensity, relative location) can be extracted directly and
automatically. This can in turn provide a basis for systematic quantitative com-
parison of activation patterns in images collected from the same subject over
time, from multiple subjects, and from multiple sites.
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