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Abstract

We describe a method to automatically find the point correspondences between a collection of polygonal
genus 0 meshes. This correspondence data is the key for building three-dimensional statistical shape
models, which have a variety of applications in medical imaging. Our method is based on minimizing
a cost function that describes the goodness of correspondence. Apart from a cost function derived from
the description length (MDL) of the model*, we also employ a cost function working with arbitrary local
features. As an example, we present results using surface curvature measurements. The entire method is
implemented in a collection of versatile and easy-to-use ITK classes. In addition to an overview of the
implementation, we present results for a synthetic and a real-world dataset processed with the software.
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1 Introduction

Since its introduction by Cootes et al. [1], Active Shape Models (ASMs) have become a popular segmenta-
tion method in medical imaging. The main drawback of the approach is the point correspondence problem
in the model construction phase: On every training sample for the ASM, landmarks have to be placed in
a consistent manner. While it is tedious and time-consuming work to label the training sets manually, this
approach is a feasable solution for 2D models with a limited number of landmarks. In the 3D domain
however, manual labelling is highly impractical: Not only is the required number of landmarks higher than
in the 2D case, depending on the sample shapes it becomes increasingly difficult to identify and pinpoint
corresponding points, even for experts. Several automated methods to find the correspondences in 3D have
been presented so far. In a recent comparison [6], the approach by Davies et al. to minimize a cost function
based on the minimum description length of the resulting statistical shape model [2] delivered the most
promising results. The correspondence optimization of this method was later improved by Heimann et al.
in [4], using a more efficient reparameterization scheme and a gradient descent optimization. In this paper,
we present the implementation of this correspondence optimization for the Insight Toolkit (ITK) and explore
the possibilities of alternative cost functions.

2 Material and Methods

2.1 Statistical shape models

Statistical shape models capture shape information from a set of labeled training data. A popular method to
describe these shapes are point distribution models [1], where each training shape is specified by a set of n
landmarks on the surface. Applying principal component analysis to the covariance matrix of all landmarks
delivers the principal modes of variation py, in the training data and the corresponding eigenvalues Apm.
Restricting the model to the first ¢ modes, all valid shapes can be approximated by the mean shape X and a
linear combination of displacement vectors:

C
X=X+ Z YmPm 1)
m=1
In general, c is chosen so that the model explains a certain amount of the total variance, usually between

90% and 99%. In order to describe the modeled shape and its variations correctly, landmarks on all training
samples have to be located at corresponding positions.

2.2 Correspondence by optimization

A prerequisite for statistical shape models is a set of landmark points located at corresponding positions
on all training shapes. In the MDL approach introduced by Davies et al. [2], these points are created by
minimizing a cost function F which is based on the minimum description length of the generated model. In
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this work, we use a simplified version of the MDL as proposed by Thodberg [7], where F is defined as:

>
F= z Lm With £p= 1+10g(Am/Acut)  fOr Am > Acut -
m Am/Aaut for Am < Acut

Acut 1S the threshold that determines which modes are considered as systematic variations and which ones as
noise.

2.3 Alternative cost functions

Generally, the A, in Eq. 2 correspond to the eigenvalues of the landmark positions, i.e. their spatial locations.
However, it is also possible to use any other local feature and minimze a cost function F based on the
eigenvalues of these features. A good example for this are local curvature metrics as the ones presented in
Koenderink [5], namely, the shape index Sand the curvedness C. C and Scan be computed as functions
of the two principal curvatures of the surface. They basically are equivalent to a polar representation of the
principal curvatures K, and Ko.

2
C=in (K2 +K32)/2 (3)
2 K1+ K2
S=—Zarctan 4)
Tt K1 — K2

C and Simprove the curvature measurement by decoupling the size and shape aspects of the curvature. C
describes how curved an object is, and is closely related to the size. S on the other hand, is indicating
the shape of the surface in terms of concaveness and convexness. This pair of metrics is very suitable for
measuring correspondence of two surfaces, since they provide a means of measuring shape in a very intuitive
way.

It should be noted that, even though we only present results using C and S as metrics in this work, our
implementation provides complete flexibility in the choice of features to be used. This is achieved by letting
the user provide the number of features per point and feature values, without any constraints. The feature
values should be computed offline and stored in a feature file for each object in the population.

2.4 Mesh parameterization

To define an initial set of correspondences and a means of manipulating them efficiently, we need a conve-
nient parameter domain for our training shapes. In order to minimize complexity for the parameterization
of 3D shapes, we will restrict the discussion to closed two-manifolds of genus 0 (i.e. surfaces without holes
and self-intersections). Objects of this class are topologically equivalent to a sphere and most shapes en-
countered in medical imaging are of this type (e.g. liver, kidneys and lungs). The task is to find a one-to-one
mapping which assigns every point on the surface of the mesh a unique position on the unit sphere, described
by two parameters longitude 6 € [0..211 and latitude ¢ € [0..17.

Along with this article, we provide source code to create a conformal parameterization for a genus 0 input
mesh based on the method described by Gu et al. in [3]. Alternatively, the classes for handling spherical
harmonics from the UNC Neurolib (www. i a. unc. edu/ dev/ ) can be used for the same purpose, or any other
method to create a spherical parameterization.
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Figure 1: The first eigenmode of the synthetic cuboid dataset after landmark optimization (ranging from
—20 to +20).

2.5 Optimizing landmark correspondences

With an initial conformal parameterization w; for each training sample i, we can acquire the necessary
landmarks by mapping a set of spherical coordinates to each shape. To optimize the point correspondences
with respect to our cost function, two possibilities are available: We can either change the individual w; and
maintain a fixed set of global landmarks or modify individual landmark sets W;.

In this work, we opted for the first alternative, which has the advantage that the correspondence is valid for
any set of points placed on the unit sphere. The modification is performed by warping the parameterizations
inside strictly local regions, modeled by a Gaussian envelope function. Direction and amplitude of the warp
are determined by the gradients of the cost function F. For a detailed description of the approach, we refer
the reader to [4].

3 Experiments and Results

3.1 Spatial location based optimization

An in-depth evaluation of the correspondence optimization using a cost function based on the 3D spatial
locations of vertices for establishing correspondence was conducted in [4]. As an example, we supply the
reader with one of the synthetic datasets from that paper, a collection of 20 cuboids with varying aspect
ratio. The correspondence optimization of these meshes converges in less than 1000 iterations, which takes
approximately 15 minutes on a modern desktop PC. The variation along the first mode of the resulting shape
model is displayed in Figure 1 and shows the expected bahaviour.

3.2 Local curvature based optimization

The extended version of the presented method can use any number of local features for establishing corre-
spondence. The feature values at each location are provided in input files. Here, we present results of an
experiment where we used the previously presented local curvature metrics C and S as our features. Figures
2 and 3 show the results of this optimization, visualized such that corresponding locations across the pop-
ulation are colored in the same way. Figure 2 shows the ¢ value correspondence and Figure 3 shows the 6
value correspondence, where @and 0 are the usual spherical coordinates.
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Figure 2: The @ values of our population after curvature based correspondence is run. Similar colors across the
objects show corresponding @ values on each object.

Note that even though we present results using only C and S metrics, our tool allows the usage of any desired
optimization metric, or any combination thereof. This is achieved by making the correspondence based on
input read through a file, and not internal computations. This provides great flexibility and enables exploring
various shape metrics and inspecting the quality of the correspondence they imply, without even modifying
the code.

4 Implementation

Although the proposed algorithm is easier to implement than the original MDL optimization, doing so still
is a challenging undertaking. One of the earliest problems encountered was that ITK, while offering a large
variety of 2D and 3D image filters, provides only very limited mesh support. Most of the functionality
necessary for parameterizing meshes — beginning with efficient access to vertices, edges and faces — had
to be implemented from scratch in diverse subclasses of i t k: : Mesh. Consequently, there was a lot of work
to do apart from designing the core components of the algorithm. An overview of how these classes act
together in the algorithm for automatic model building is given in Fig. 4.

An example application to find corresponding landmarks over a set of training meshes is provided along
with these classes as a ready-to-use tool. The only parameters to this tool are an input list file, a landmark
file, and a model radius. The input list file is a simple text file including the paths for all the input mesh files
representing the input objects in the population. For each object, there should be separate files containing
the vertices, the faces, the parametrization, and the features (if the features rather than the spatial locations
are to be used for the optimization). Each of these files should have the same name, but different extensions:
.pts for the vertices, . f ce for the faces, .par for the parametrization, and .txt for the features. The landmark
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Figure 3: The O values of our population after curvature based correspondence is run. Similar colors across the
objects show corresponding 0 values on each object.

file is a separate mesh file that holds the coordinates of the landmark prototypes on the unit sphere. One of
the simplest methods to create a landmark mesh is to subdivide one of the platonic solids, e.g. the icosaeder.
Two landmark meshes, consisting of 642 and 2562 points, respectively, are provided with the example data.
The last parameter, the model radius, is used to determine the variance threshold for the cost function. Note
that the radius has to be given in number of voxels to allow a valid interpretation of the noise in the training
data. To run the correspondence optimization with the example cuboid data, the command line arguments
should be cuboi ds. txt | andmar ks642. pts 100.

A detailed overview of how the example application works is useful to demonstrate how the various classes
work together. Initially, an instance of the St ati sti cal ShapeMbdel 3DCal cul at or class is created and
provided with a cost function, which is an instance of the Si npl i fi edMDLCost Functi on class. Note that
one can either choose the St at i sti cal ShapeMdel 3DCal cul at or class itself and use spatial locations as a
metric, or use the subclass St ati sti cal ShapeMdel 3DCal cul at or Wt hFeat ur es and use arbitrary local
features. Next, the input meshes and the landmark mesh are loaded. If a parametrization file is not already
provided along with the input meshes, a suitable initial parametrization is computed, either via conformal
spherical parametrization or via spherical harmonics basis functions (the first method is used in the pro-
vided example application). Any other method that generates a spherical parametrization can be used as
well. The resulting instances of the Spheri cal Paranetri zedTri angl eMesh class are then provided to the
St atistical ShapeMbdel 3DCal cul at or. After the Stati sti cal ShapeMdel 3DCal cul at or is updated,
all that remains to do is to output the final versions of the meshes. Additionally, the final (corresponding)
parameterization can be queried for all input samples. On these parameterizations, points with the same
(,0) values will be corresponding.



Figure 4: An overview of the pipeline involved in the algorithm for automatic model building. Each training
sample is read from disk and parameterized conformally. Using a landmark mesh which is also read from
disk, shapes with the same number of vertices are created. These are aligned by a Generalized Procrustes
matching and scaled to tangent size. In each optimization step, all parameterizations are modified by the
Gaussian warp filter and the results written back to the original data (dotted line). Subsequently, landmarks
and parameterizations are rotated with the same transform (i.e. landmark positions on the generated meshes
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do not change), again overwriting the original values.



5 Conclusions

We have presented a method to automatically find the correspondences on a set of genus 0 meshes, which is
the basis for building a 3D statistical shape model. For all necessary steps, from file 10 over the creation of
a parameterization up to the actual optimization of correspondences, we provide flexible, high-performance
and easy-to-use ITK classes. In addition to the standard method of minimizing a cost function based on
the spatial location of landmarks, we offer the possibility to use arbitrary features, e.g. curvature metrics.
This collection of classes substantially eases the creation of 3D statistical shape models and should further
propagate their use in medical image analysis.
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