3D Slicer Tutorial: Prototyping Surgical Robot System Using ROS and 3D Slicer

Junichi Tokuda¹, Tobias Frank², Axel Krieger³, Simon Leonard⁴, Niravkumar Patel⁵

- ¹ Brigham and Women's Hospital
- ² Gottfried Wilhelm Leibniz Universität Hannover
- ³ Children's National Health System
- ⁴ Johns Hopkins University
- ⁵ Worcester Polytechnic Institute

Background

- Growing Interest in Robot Assisted Interventions
 - Robot-assisted laparoscopy
 - Robotic catheter systems
 - Robotic radiosurgery, etc.
- R&D of Surgical Robot System
 - Image processing and visualization for surgical planning
 - Kinematics and motion planning for robot control
 - Device management and control
- → Requires a wide range of tools and methods developed in robotics and medical image computing fields

Background (2)

- Common research platforms
 - Medical Image Computing
 - 3D Slicer
 - MITK
 - NifTK
 - OsiriX...
 - Medical Robotics
 - da Vinci Toolkit (dVRK)
 - Raven II
 - KUKA Lightweight Robot

Data sharing interface based on OpenIGTLink

Integrated with Robot Operating System (ROS)

→ Need for a bridge between ROS and OpenIGTLink

Objective of This Tutorial

- Prototype surgical robot system using widely-available software and hardware
 - 3D Slicer as planning interface
 - Lego Mindstorms as robot hardware
 - Robot Operating System (ROS) as robot control software
- Through this tutorial, you can:
 - Learn software architecture of surgical robot systems
 - Acquire hands-on experience of software-hardware integration for medical robotics

Prerequisite

- 3D Slicer Version 4.6 or later
- Lego Mindstorms EV3 with WiFi dongle
- ev3dev Debian Linux for Mindstorms EV3
 - http://www.ev3dev.org
- ROS-IGTL-Bridge
 - https://github.com/openigtlink/ROS-IGTL-Bridge

Architecture

Tasks in Each Compenent

- 3D Slicer
 - Medical Image Display
 - Segmentation
 - Procedure Planning
 - Pre/Intra Image Registration
 - Tracker support
- OpenIGTLink
 - Communication Protocol
 - Transformation manager

- ROS
 - Robot Control
 - Path Planning
 - Image Libraries
 - Sensor Integration
 - Simulation
- ROS-IGTL-Bridge
 - Convert ROS topics to OpenIGTLink
 - Transformation manager
- Controller Node
 - Control actuators

Step 1: Preoperative Planning

- Pre-operative MRI Brain
 Scan
- Mark three distinct points on brain for registration in Slicer
- Plan cut in Brain Stem for tumor removal in Slicer

Step 2: Pre/Intraoperative Registration

 Place scalpel over three distinct points for registration

 Send registration points through ROS to Slicer

Step 2: Pre/Intraoperative Registration (2)

 Perform registration in Slicer

 Send target points for cut to ROS

Step 3: Robotic Procedure

 Robot path is planned and sent to robot

 Robotic traces the planned trajectory

Conclusion

- Integration of 3D Slicer and ROS
 - Provide access to resources developed in two communities

- Allows quick prototyping of surgical robot systems
- Thanks to a wide variety of hardware supported by ROS, the system can be scaled up easily without changing the system architecture

