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In this paper, we present a set of techniques for the evaluation of brain
tissue classifiers on a large data set of MR images of the head. Due to
the difficulty of establishing a gold standard for this type of data, we
focus our attention on methods which do not require a ground truth,
but instead rely on a common agreement principle. Three different
techniques are presented: the Williams’ index, a measure of common
agreement; STAPLE, an Expectation Maximization algorithm which
simultaneously estimates performance parameters and constructs an
estimated reference standard; and Multidimensional Scaling, a
visualization technique to explore similarity data. We apply these
different evaluation methodologies to a set of eleven different
segmentation algorithms on forty MR images. We then validate our
evaluation pipeline by building a ground truth based on human expert
tracings. The evaluations with and without a ground truth are
compared. Our findings show that comparing classifiers without a
gold standard can provide a lot of interesting information. In
particular, outliers can be easily detected, strongly consistent or highly
variable techniques can be readily discriminated, and the overall
similarity between different techniques can be assessed. On the other
hand, we also find that some information present in the expert
segmentations is not captured by the automatic classifiers, suggesting
that common agreement alone may not be sufficient for a precise
performance evaluation of brain tissue classifiers.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Evaluation; Validation; Image segmentation; Agreement; Gold
standard
⁎ Corresponding author. Psychiatry Neuroimaging Laboratory, Depart-
ment of Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA.

E-mail address: sylvain@bwh.harvard.edu (S. Bouix).
Available online on ScienceDirect (www.sciencedirect.com).

1053-8119/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2007.04.031
Introduction

Automatic segmentation of medical images has been an
essential component of many applications and considerable effort
has been invested in order to find reliable and accurate algorithms
to solve this difficult problem. Many techniques have been pro-
posed with different levels of automation and range of applic-
ability. However, proposing a new algorithm is not merely enough.
A thorough evaluation of its performance is necessary with some
quantifiable measurement of its accuracy and variability.

The problem of measuring the performance of segmentation
algorithms is the subject of this article. We investigate different
techniques to assess the quality of multiple segmentation methods
on a problem-specific data set. We are especially interested in
cases where there is no ground truth available. We focus on the
evaluation of brain tissue classifiers, although our framework can
be applied to any segmentation problem.

Before we turn our attention to situations where no ground truth
is available, we briefly review the key aspects of evaluation with a
ground truth. In this scenario, the accuracy of the evaluation
depends on two important components. First, one needs to have or
design a suitable ground truth, and second, one needs to choose
appropriate similarity metrics for the problem being evaluated.

Defining a ground truth in a medical context is not trivial and
several approaches have been proposed. A common and popular
technique is to compare automatic techniques with a group of
human experts (Grau et al., 2004; Rex et al., 2004). In this frame-
work, one assumes that human raters hold some prior knowledge
of the ground truth that is reflected in their manual tracings.
Unfortunately, human raters make errors and considerations of
accuracy and variability must be addressed (Zijdenbos et al., 2002).
Another common technique is the use of phantoms. For seg-
mentation problems, phantoms are usually synthetic images for
which the true segmentation is known (Collins et al., 1998; Zhang
et al., 2001; Ashburner and Friston, 2003). A physical object can
also be used as a phantom ground truth. The phantom is first
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measured, then imaged. The true measurements and segmentation
measurements are compared and performance is thus assessed
(Klingensmith et al., 2000). Studies with cadavers have also been
completed in a similar fashion (Klingensmith et al., 2000; Yoo et
al., 2000). Unfortunately, it is exceedingly difficult to design
phantoms that appropriately mimic in vivo data and postmortem
data differ from perfused, living tissue.

Once a ground truth is created, the key task of evaluation is to
measure the similarity between the reference and the automatic
segmentation. It is still unclear whether a generic set of
measurements can be used for all segmentation problems, although
some measures have been popular. Differences in volume have
often been used, possibly because volume is such a central
measurement in MR imaging studies (Zijdenbos et al., 1994).
However, two objects with the same volume can be quite dissimilar
and alternative measures are needed. To address this issue,
different forms of distances between boundaries of segmented
objects have been used, a popular choice being the Hausdorff
distance (Chalana and Kim, 1997; Gerig et al., 2001). Measures of
spatial overlap have also been considered important as an
alternative to volume differences (Zijdenbos et al., 1994, 2002;
Ashburner and Friston, 2003; Grau et al., 2004; Pohl et al., 2004).
We will investigate these in detail in Similarity measures.

For many medical problems, as noted previously, phantom
studies are considered insufficient for validation and manual
tracings are simply not available. In the work presented here, we
focus on the automatic classification of the brain into four major
tissue classes: Gray Matter (GM), White Matter (WM), Cere-
broSpinal Fluid (CSF) and background (BG). For this specific
problem, manual tracings of the entire data set, a total of forty
cases, is simply impossible. Nevertheless, if one was to start a new
neuroimaging study, one would certainly like to evaluate the
automatic classifiers on the entire population. We thus have to turn
to methods that measure performance in situations where no
ground truth is available. A rather intuitive approach is to perform
such an evaluation based on common agreement. That is, if nine
out of ten algorithms classify voxel x in subject i as white matter
then one says there is a 90% chance this voxel truly is white matter.
This simple technique is interesting but limited as all algorithms
have equal voting power and situations can arise where a voxel can
have equal probability to be classified into different tissue classes.
Nevertheless, this notion of common agreement is useful and can
be quantified directly through measures such as the Williams’
index (Chalana and Kim, 1997; Klingensmith et al., 2000; Martin-
Fernandez et al., 2005). Creating a reference according to the
majority of votes from the segmentations can also be done. The
reference can then be used as a ground truth for further
performance measurements. A more elaborate technique is the
one developed by Warfield et al. (2004) which creates simulta-
neously a reference standard as well as performance parameters
through an Expectation Maximization framework.

This evaluation approach based on common agreement is the
foundation of the work we present here. Our MR brain
segmentation problem suffers from the lack of readily available
database that has both the type of input data we use and accurate
reference classifications. Without a gold standard, the problem is
clearly ill-posed, and we believe common agreement is a sensible
solution. It should be noted that some care should be taken while
analyzing the results as one cannot state with certainty that one
algorithm clearly outperforms the others purely based on a
common agreement principle. Nevertheless, we will at least be
able to observe and study many aspects of the segmentation
performance such as robustness, variability between different
cases, brain regions, or tissue classes. We will also be able to infer
how different algorithms are and whether some techniques tend to
behave similarly. One key aspect for the success of our study is the
requirement that the input to the common agreement is unbiased. If
a subset of the methods tested always behave similarly, the
agreement will be biased towards these methods and the evaluation
may be incorrect. In our work, we selected 11 segmentation
techniques, which we believed represented a well-balanced set of
techniques. We incorporate a discussion on bias as part of our
analysis in the Discussion section.

In this article, we make several contributions: First, we present
a framework in which one can assess segmentation performance
purely based on common agreement. Three methods form the basis
of this framework: Williams’ Index a technique we recently
introduced (Martin-Fernandez et al., 2005); STAPLE’s algorithm
(Warfield et al., 2004); and a novel visualization based on
Multidimensional Scaling (MDS), a statistical tool to explore
(dis)similarity data (Borg and Groenen, 1997; Cox and Cox, 2000).
Second, we discuss the validity of our results by comparing our
framework (purely based on common agreement) with an
evaluation against a set of manual segmentations (used as ground
truth). Our findings suggest that common agreement evaluation
provides almost the same information as evaluating against a
ground truth, with respect to robustness, variability and even
ranking. Nevertheless, we do observe that some of the information
captured by human expert is not present in the automatic
classifications. Common agreement alone may thus not be
sufficient to accurately rank automatic segmentation algorithms.
Finally, as our experiments test eleven state of the art segmentation
algorithms on a real and rather large data set, we provide useful and
new knowledge about the performance of these algorithms to the
community.

In the following section, we give a detail description of the
design of the evaluation framework. We start by introducing
different similarity measures to compare binary images. We then
give detailed information on how Williams’ index is computed and
present a brief review of STAPLE’s underlying principles and how
it is used in our experiments. We give a more in depth description
of MDS, as we have not seen this technique used for evaluation
elsewhere.

The Experiments section describes our experimental setup:
which data set is being used, which algorithms are being tested and
what kinds of tests are being performed. This section starts with an
experiment in which absolutely no ground truth is available and
only common agreement is used. We then validate our approach by
creating gold standards based on human tracings of a small subset
of the data to validate if common agreement is indeed a sensible
approach. We analyze our results in the Results section, and
discuss the feasibility, accuracy, robustness, scalability and
significance of evaluating brain tissue classification algorithms
purely based on their common agreement in the Discussion
section. The Conclusion section concludes the paper summarizing
the achieved results.

Measuring segmentation quality

The main underlying principle of our evaluation is the notion of
agreement. In our work, the agreement of two segmentation
techniques is defined as the similarity between their respective



Fig. 1. Schematic diagram for sets X and Y and scalar values a11, a12, a21
and a22.

Table 1
Similarity measures, adapted from Cox and Cox (2000)

Czekanowski, Dice, Sorensen 2a11
2a11 þ a12 þ a21

Jaccard
a11

a11 þ a12 þ a21

Rogers, Tanimoto
a11 þ a22

a11 þ 2a12 þ 2a21 þ a22

Simple matching coefficient
a11 þ a22

a11 þ a12 þ a21 þ a22
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outputs. Once a similarity measure is decided upon, one can
compute a similarity matrix capturing how well matched all the
segmentations are with each other or with a reference segmentation
(manual or estimated).

Similarity measures

Even though our segmentations contain multiple labels, one can
view them as separate binary maps where each tissue class is
represented as an image labeled 1 inside the tissue (foreground)
and 0 outside (background). The problem is then reduced to
assessing the similarity of two binary maps I1 and I2, which is
traditionally done by measuring the number of voxels at which
both segmentations score “1”, the number of voxels at which one
scores “0” and the other “1”, etc. A 2×2 table can represent all
possibilities as follows:

Another, perhaps more intuitive way of interpreting these
numbers is by using simple set theory concepts. Consider two
binary images I1 and I2 defined over a finite grid L of n spatial sites
x. Let X represent the set of locations of voxels labeled “1” in I1,
X={x∈L, I1(x)=1} and Y the set of locations of voxels labeled
“1” in I2, Y={x∈L, I2(x)=1}. The four scalar measurements
described earlier can also be expressed as set theory operations:
a11= |X∩Y|, a12= |X−{X∩Y}|, a21= |Y−{X∩Y}| and a22= |X̄ ∩ Ȳ |
as shown schematically in Fig. 1. Combinations of these measures
are also of interest, for example a11+a12+a21= |X∪Y|. Based on
these four counts, a11, a22, a12, a21, one can derive a number of
different similarity coefficients as shown in Table 1 (Cox and Cox,
2000).

The most relevant measures to MR brain segmentation are the
simple matching coefficient (SC), the Jaccard coefficient (JC) and
the Dice coefficient (DC). Due to the large number of zeros in our
binary maps, a22 is usually much larger than the other agreement
counts and the range of values of SC in real experiment is not wide
enough to be analyzed properly. We chose JC as our similarity
measure as it only evaluates the amount of overlap of the
foreground component (Jaccard, 1901):

JC ¼ a11
a11 þ a12 þ a21

¼ jX \ Y j
jX [ Y j : ð1Þ

The measure is normalized between zero and one. If the objects
exactly overlap JC=1, if they are not connected then JC=0.

DC has also been commonly used for evaluation and has been
shown to be related to the κ statistic (Zijdenbos et al., 2002;
Ashburner and Friston, 2003; Pohl et al., 2004). JC is almost
linearly proportional to DC and essentially captures the same
information, we thus do not need to use DC. We refer the reader to
Hripcsak and Heitjan (2002) for an interesting discussion on
measuring similarity in medical informatics studies.

Williams’ index

Consider a set of r raters labeling the finite grid L of n voxels with
labels {1, 0}. Let Xj be the set of voxels labeled 1 by rater j and s(Xj,
Xj V) the similarity between rater j and jVover all n voxels. Several
similarity measures can be used as seen in the section on Similarity
measures. Williams’ index for rater j is defined as (Williams, 1976):

WIj ¼
ðr � 2ÞPr

j Vpj
s Xj;Xj V
� �

2
Pr
j Vpj

Pj V�1

j Wpj
s Xj V;Xj W
� � ð2Þ

If this index is greater than one, it can be concluded that rater j agrees
with the other raters at least as well as they agree with each other
(Williams, 1976).

Using the similarities defined in the section on Similarity
measures, we can study the statistics of Williams’ index for each
algorithm, for each label, over all subjects.

Multi-label STAPLE algorithm

STAPLE was first introduced as a method to evaluate the
quality of binary segmentation among experts (Warfield et al.,
2002a,b), it was then extended to multi-label segmentations
(Rohlfing et al., 2003a,b). In this section, we briefly review the
multi-label version of STAPLE, a comprehensive description of the
method can be found in (Warfield et al., 2004). This algorithm
calculates an estimated multi-label reference standard map from a
set of r given segmentations (raters). Consider a segmented image
with n voxels taking one of l possible labels. Let θj be an l× l
matrix. Each element θj(tV,t) describes the probability that rater j
labels a voxel with tVwhen the true label is t. This matrix is similar
to the normalized confusion matrix of a Bayesian classifier (Xu
et al., 1992), and we will use this terminology for the remainder of
the paper. Let θ=[θ1, …, θr] be the unknown set of all confusion
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matrices characterizing all r raters. Let T=(T1, …, Tn)
T be a vector

representation of the unknown true segmentation and M an n× r
matrix whose columns are the r known segmentations. M is the
incomplete data and (M, T) the complete data. STAPLE is an
estimation process based on the EM algorithm which can estimate
the truth T and the matrix θ at the same time by maximizing the
expectation of the complete data log likelihood ln{f(M, T|θ)}. One
of the most interesting features of STAPLE is that it produces
performance measurements for each segmentation algorithms (the
θj confusion matrices) as well as an approximation of the common
agreement, which can be viewed as an estimated reference standard
based on the input data. Details on the implementation can be
found in Warfield et al. (2004).

Once the reference standard estimate is known, it can be used
for the evaluation of each algorithm using any of the normalized
metrics defined in the section on Similarity measures for each label
and over all subjects. One can also analyze the θj matrices giving
the probability of the data given the reference estimate. A good
classifier should have high values in the diagonal elements and low
values in the off-diagonal elements.

Multidimensional scaling

MDS is a data exploration technique that represents measure-
ments of dissimilarity among pairs of objects as distances between
points of a low-dimensional space. We refer the reader to the books
by Borg and Groenen (1997) and Cox and Cox (2000) for a
thorough treatment of the subject. Formally, let Δ={δij} be an r× r
matrix representing the pair-wise dissimilarity (or distance)
between r points. What MDS is trying to achieve is an optimal
2D layout of these r points such that their corresponding pair-wise
2D Euclidean distance matrix D={dij} is as similar to Δ as
possible. There are a number of ways of solving this problem, but
the main idea is to minimize a stress function capturing the error
between the true distances δij and the distances dij in the lower
dimensional mapping. In our framework, we employ a stress
function which gives more weight to points for which inter-
distances are small (Sammon, 1969; Schwartz et al., 1989):

E ¼ 1
c

Xr

i¼1

Xr

j¼i

dij � dij
� �2

dij

" #
; ð3Þ

where c=∑i=1
r ∑j=i

r [δij]. The optimization process to find the optimal
2D layout given Δ usually starts with a random 2D layout of the r
Fig. 2. Example of MDS. This map was created based o
points and then moves them in order to minimize E using a stan-
dard gradient descent strategy. Details on the implementation can
be found in Sammon (1969).

We illustrate the process with an example. Let Δ represent the
pair-wise distances between Philadelphia PA, Boston MA, New
York City NY and Montreal QC. One can create a good
approximation of a 2D map up to a rotation and a translation
only based on Δ as shown in Fig. 2. It should be noted that a good
2D layout is not always possible. For example, points equally
sampled on a 3D sphere cannot be unwrapped to the 2D plane
without significant distortions in the interdistances. More so, there
are as many MDS projections as there are points, for which the
residual strains and point distances would be identical. Great
caution should thus be used when interpreting MDS results as the
distances observed in 2D do not perfectly reflect the true distance
in mD. In addition to each MDS map, we add a scatter diagram of
the true distance vs. the 2D MDS distance, we call these residual
plots (Borg and Groenen, 1997). We also record the residual errors
between true distances and mapped MDS plot of city interdistances
distances: |δij−dij|, and display the mean error associated with each
plot. We trust the MDS plot if the errors are reasonable and most
importantly well distributed over the different data points,
indicating that the mapping, although not perfect, was done with
a similar error range for each data points.

In our problem, each subject k and each label l has one r× r
matrix Δk={δijk} representing the dissimilarity (1− JC) between r
segmentation algorithms for subject k and label l. Obviously,
creating one MDS plot for each subject and for each label is not
practical, so our goal is to create a single 2D configuration per label
consisting of r points capturing the mean dissimilarity between the
r different segmentation techniques as well as their variability over
all N subjects. First, the mean matrix, Δμ, and standard deviation
matrix, Δσ, of all N dissimilarity matrices, are computed over all
subjects. Second, an MDS 2D configuration is found for Δμ based
on Eq. (3). The solution is the position of r 2D points representing
the r different segmentation techniques. Third, a Delaunay
triangulation of the 2D configuration is computed. One of the
property of the Delaunay triangulation is that for a given
segmentation technique, its most similar techniques must be
connected to it through an edge in the 2D graph. Finally, the
average standard deviation of method i, σi=1/r∑j=1

r Δσ(i, j) is
computed and represented as a circle of radius σi around the 2D
point representing method i. In summary, in one quick observation,
it is possible to assess how similar methods are, and what is their
nly on the interdistances between the four cities.
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overall variability. Fig. 6 shows different plots generated using this
technique for our study. We add to these plots the mean residual
error as well as a short analysis of the distribution of the residual
errors. Detailed comments and interpretations are provided in the
Discussion section.

Experiments

Data set

Our data set consists of forty female subjects. The acquisition
protocol involves two MR pulse sequences acquired on a 1.5-T GE
scanner. First, a SPoiled Gradient-Recalled (SPGR) sequence
yielded an MR volume sliced coronally of size 256×256×124 and
voxel dimensions 0.9375×0.9375×1.5 mm. Second, a double-
echo spin-echo sequence gave two MR volumes sliced axially
(proton density and T2 weighted) of size 256×256×54 and voxel
dimensions 0.9375×0.9375×3 mm. For each subject, both axial
volumes were co-registered and resampled to the SPGR volume
coordinate space using a Mutual Information rigid registration
algorithm (Wells et al., 1996b). The reformatting was done using
tri-linear interpolation. Due to limitations on the number of inputs
of some of the classification algorithms, only the resampled T2
weighted and the original SPGR were used for segmentation.

Segmentation algorithms

Seven different automatic classifiers were evaluated. The task
given was to segment the brain into four classes: BG, CSF, GM
and WM. The algorithms were used “as is”, i.e., with no special
tuning of the parameters.

A description of the seven different automatic classifiers, or
segmenters, follows:

• KNN: A statistical classification, whose core is a k Nearest
Neighbor classifier algorithm trained automatically by non linear
atlas registration (Warfield, 1996) provided by S. K. Warfield of
the Computational Radiology Laboratory at Brigham and
Women’s Hospital, Boston, MA, USA.

• MNI: A back-propagation Artificial Neural Network classifier
(Zijdenbos et al., 1994), trained automatically by affine atlas
registration (Zijdenbos et al., 2002), the pipeline also includes its
own bias field correction tool (Sled et al., 1998). The software
used was part of the Medical Image Net CDF (MINC) package
available at the McConnell Brain Imaging Center of the
Montréal Neurological Institute, Canada.1

• FSL: A classification algorithm that makes use of a Hidden
Markov Random Field Model and the Expectation Maximiza-
tion Algorithm (Zhang et al., 2001). The software used was part
of the Oxford Centre for Functional Magnetic Resonance
Imaging of the Brain Software Library (FSL) package version
3.5 of the University of Oxford, UK.2

• SPM: A mixture model clustering algorithm, which has been
extended to include spatial priors and to correct image intensity
non-uniformities (Ashburner and Friston, 2003). The method
produces soft segmentation images that are then thresholded into
hard labels. The software used was part of the Statistical
1 http://www.bic.mni.mcgill.ca/software/distribution/.
2 http://www.fmrib.ox.ac.uk/fsl/.
Parametric Mapping (SPM2) package from the Functional
Imaging Laboratory at University College London, UK.3

• EMS: The original implementation of the Expectation Max-
imization algorithm was designed by Wells et al. (1996a) and
provided by W. M. Wells of the Surgical Planning Laboratory at
Brigham and Women’s Hospital, Boston, MA, USA.

• EMA: An Expectation Maximization-based segmentation
incorporating a Markov Random Field Model, and spatial
prior information aligned to subject’s space by non linear
registration (Pohl et al., 2004). The software used was part of the
3D slicer package of the Surgical Planning Laboratory, Brigham
and Women’s Hospital, USA.4

• WAT: Awatershed-based segmentation which also incorporates
spatial prior information in the form of a non linearly aligned
atlas (Grau et al., 2004) provided by V. Grau at Medical Vision
Laboratory, Department of Engineering Science, University of
Oxford, UK.Many of these techniques require training data in the
form of an atlas. The choice of the atlas is important and could
potentially bias the output towards the training set. Fortunately,
our set of segmentation techniques, training data and spatial
priors is well balanced. EMS and FSL do not use an atlas. KNN,
WATand EMA use the atlas provided with the 3D slicer software
package. MNI and SPM use the MNI templates.

An interesting question arose during our experiments. It was
assumed that using both SPGR and T2 images as input would lead
to better results than using the SPGR image only. However, some
techniques seem to have been better optimized for single channel
segmentation. We thus decided to also evaluate single channel
segmentation whenever possible. This gave rise to eleven different
segmentation outputs: KNN2, KNN1, MNI2, MNI1, FSL2, FSL1,
SPM2, SPM1, EMS2, EMA2, WAT2. The number following the
three-letter algorithm acronym defines the number of inputs. The
implementation of EMS, EMA and WAT available to us could only
handle dual channel segmentation, which is why only those were
tested. It is important to note that the T2 image was used in every
experiment to perform brain stripping.

Pre- and post-processing

Brain tissue segmentation based on an MR image involves more
than gray level classification. In fact, a full pipeline consisting of (i)
filtering, (ii) bias field correction, (iii) tissue classification and (iv)
brain stripping is necessary to obtain accurate results. Not all of the
methods employed in this study incorporate the entire pipeline. For
example, EMA tries to combine all these steps in one single
probabilistic framework whereas other techniques such as KNN rely
on external pre- and post-processing steps. Table 2 gives an overview
of which steps of the pipeline described above were incorporated in
each method. When a method was missing a component of the
pipeline, one of the following techniques was used:

• filtering, the data was smoothed using a diffusion based
anisotropic filter (Krissian, 2002) (a component of 3D slicer);

• bias field correction, was done using the technique of Wells
et al. (1996a) which we had readily available from previous
studies;
3 http://www.fil.ion.ucl.ac.uk/spm/software/spm2/.
4 http://www.slicer.org.

http://www.bic.mni.mcgill.ca/software/distribution/
http://www.fmrib.ox.ac.uk/fsl/
http://www.fil.ion.ucl.ac.uk/spm/software/spm2/
http://www.slicer.org


Table 2
Segmentation pipeline features

KNN MNI FSL SPM EMS EMA WAT

Filtering ○ × × × × × ○
Bias correction ○ × × × × × ○
Brain stripping ○ ○ × ○ ○ × ×

The “○” marks a missing feature in the pipeline. In such cases, standard
tools were used (see text).
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• brain stripping, the brain was extracted using the Brain
Extraction Tool (a component of FSL 3.5) on the T2w image
(Smith, 2002).

There are different combinations of tools as well as many other
algorithms available to pre- and post-process MR images. The
above mentioned order and techniques were chosen because they
are all relatively standard and were easily accessible to us. We are
aware that other tools, or combination of tools might lead to better
results, but they are not the focus of this article.

Manual segmentations

The primary motivation of this paper is to present different
techniques to evaluate segmentation algorithms when no gold
Fig. 3. Sub-regions of the brain se
standard is provided. In doing so, there is a non-negligible
possibility that the knowledge acquired through all automatic
segmentations is still very far from the truth. If this is indeed the
case, then it can be argued that the notion of agreement in the
context of purely automatic segmentation is not sufficient to
evaluate the performance of a given technique. Thus unless expert
manual segmentations are available, validating our performance
evaluation framework is impossible. Fortunately, we have several
options available to us. One is to use a template brain such as the
MNI brain (Collins et al., 1998) and its segmentation, which has
the disadvantage of not being exactly similar to our data set.
Another possibility is to have an expert human rater label each of
our brain into the four main tissue classes.

However, manually segmenting a full brain is extremely time
consuming. In this project, we tried to find a good compromise
between time, accuracy and completeness. Out of the forty
original cases, twenty were selected randomly. In each brain, four
small rectangular sub-regions were manually segmented in
coronal slices. Each region was located in a similar location for
each brain:

• center of frontal lobe, just anterior to the lateral ventricles.
• right superior temporal gyrus area at the anterior commissure.
• superior part of the frontal lobe at the mid point between the

anterior and posterior commissure.
lected for manual labeling.
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• left superior temporal gyrus area around the posterior
commissure.

A sample case with the four sub-regions is shown in Fig. 3.
For each of the twenty scans, three experts manually labeled the

four sub-regions into BG, GM, WM and CSF.

Statistical analyses

Evaluation with no manual segmentation reference
Let Xil={x, Ii(x)= l} be the set of voxels labeled l by rater i.

Let ASRE (Automatic Segmentation Reference Estimate) be the
estimated reference computed by STAPLE from all eleven multi-
categorical label maps, with ASREl the set of voxels labeled l in
ASRE. For each subject, for each label, different types of
analysis were done. First, Williams’ index was computed for
each label using the eleven Xil as input and JC as the agreement
measure. Second, for each rater, the JC between Xil and the
reference estimate for that labeled ASREl were computed. The
mean and standard deviation of the Williams’ index and JC
score against ASREl over all subjects are shown in Fig. 4. The
probability that rater j labels a voxel with sVwhen the ASRE
label is s (the confusion matrices θj(sV, s) obtained by STAPLE)
are represented in Fig. 5. In the figure, each table represents the
average θj(sV, s) for a particular algorithm over all cases. The
Fig. 4. Mean/std plots: Top, JC score against STAPLE's ASRE; Bottom, W
color-coding used in the figure gives another visual cue for
assessing the quality of the segmentation. A good algorithm will
display bright coloring in the diagonal and dark coloring
everywhere else. Gray regions generally indicate poor perfor-
mance. Finally, MDS plots were generated based on the average
of forty interdistance matrices. Each matrix had 12×12 values
corresponding to one minus the similarity measure between each
one of the eleven segmentation as well as ASRE. The plots are
shown in Fig. 6.

Evaluation with a manual segmentation reference
Let MSRE (Manual Segmentation Reference Estimate) be the

estimated reference computed by STAPLE from all three manual
segmentations of the subregions, with MSREl the set of voxels
labeled l in MSRE. First, for each of the twenty subjects, for each
label, Williams’ index was computed using JC as a metric and the
eleven Xil as input, but only on the sub-regions used for the manual
tracing. Second, for each subject, ASREl was recomputed but only
based on the sub-regions used for the manual tracing. JC was then
measured between the sub-regions of Xil and the new ASREl.
Third, for each rater, JC was measured between Xil and MSREl

(which is only defined on the sub-regions used for the manual
tracing). The mean and standard deviation of the Williams’ index
and JC score against ASRE and MSRE over all subjects are shown
in Fig. 7. MDS plots were also generated based on the average JC
illiams' Index. Red: WM score, Green: GM score, Blue: CSF score.



Fig. 5. Confusion matrices provided by STAPLE. The grayscale is a visual cue to better evaluate the quality of the segmentation, bright coloring in the diagonal
and dark coloring off-diagonal indicate good performance. For each matrix, the rows represent the labels of the ASRE and the columns the labels of the observed
segmentation. Note the matrices are not symmetric.
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table over all twenty subjects. Each matrix had 16×16 values
corresponding to one minus the JC on the sub-regions between the
eleven segmentations, the three manual segmentations, MSRE and
the new ASRE. The plots are shown in Fig. 8.

Results

Evaluation with no manual segmentation reference

Fig. 4 presents the mean/standard deviation plots of JC. Our
first observation is that, for GM and WM, Williams’ index and
STAPLE give a very similar ordering, whereas for CSF they are
quite different. This might be due to the difficulty of segmenting
CSF, which leads to higher variability and lower accuracy of the
output, and consequently less reliable agreement measurements.

Concerning the ranking of techniques, a few observations can
be made. First, we have the surprising result that single channel
segmentation performs usually better than dual channel. This is
especially true for FSL, where we suspect the algorithm was not
tuned properly for multiple inputs. Another reason might be the
low resolution of the T2 image, which could have the indirect
effect of blurring the input thus leading to a less accurate
segmentation. According to the STAPLE output, FSL1 scores best
for CSF, GM and WM. According to Williams’ index FSL1 scores
best for CSF; KNN1, FSL1 and SPM1 are first for GM; KNN1,
FSL1 and WAT2 are best for WM. Overall, FSL1 is the best
classifier according to both ASRE and William’s index.

The next set of plots we analyze are the θj confusion matrices
provided by STAPLE shown in Fig. 5. Having the full confusion
matrices is interesting as it allows us to detect not only which tissue
is misclassified but also which wrong tissue it is likely to be
labeled. Overall, all algorithms perform quite well. The most
common mistake is the classification of CSF into either BG or GM.
FSL2 also often classifies voxels WM that, according to ASRE,
truly are GM. It is important to note these matrices are not
symmetric. The probability of an algorithm labeling a voxel BG
when ASRE is CSF (quite likely) is different than the probability
of labeling CSF when ASRE is BG (highly unlikely).

We now turn to the analysis of the MDS configurations
presented in Fig. 6. These plots are based on the JC inter-
dissimilarity matrix, which is represented as Euclidean distances on
a 2D layout. STAPLE estimated reference is represented in red
with the label ASRE. We first note that the residual plots between
true distances and mapped distances indicate that the MDS are all
quite good. These plots are interesting because they not only show
how close classifiers are to the reference but also how close they
are to each other. For CSF, FSL1 is clearly closest to ASRE and
there seems to be a cluster FSL1, FSL2, MNI1, KNN1 and KNN2,
although FSL2 is highly variable. For GM, we see a tight cluster
around ASRE formed by WAT2, SPM2, SPM1, FSL1 and KNN1
corresponding to the best techniques according to Fig. 4. For WM,
there is a number of techniques which perform well, FSL1 being
best, followed closely by WAT2, KNN1 and EMA2 then SPM1,
SPM2 and MNI1. Overall, one can see the poor performance and
high variability of FSL2. EMS2 is also often in the position of an
outlier although it usually has very low variability. It is also
interesting to observe that ASRE is placed near the center in the
GM and WM plots. It illustrates well the notion of a reference
segmentation as a weighted average of multiple rater classifica-
tions. Finally, there is no clear cluster of methods that are very
similar to each other and except for outliers it would be difficult to
extract 2 or 3 different categories of classifiers based on the MDS
plots presented here.

Another important aspect of classifier performance, is its
robustness. Both Mean/Std plots and MDS plots give us a good
insight of how variable classifiers are. It is important to note that



Fig. 6. MDS plots (left) of the JC matrices for CSF, GM andWM. The value (1− JC) between two methods is represented as the Euclidean distance between their
corresponding points in the 2D map. The blue lines connect closest neighbors and the magenta circles represent the variability of JC for each algorithm. Residual
plots (right) are provided to assess the quality of the mapping.
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Fig. 7. Top, Williams' Index; Middle, JC score against the new ASRE (only based on the sub-regions); Bottom, score against MSRE. The similarities were only
computed over four small sub regions of the brain. Red: WM score, Green: GM score, Blue: CSF score.
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some classifiers may have a good mean score but not a great
standard deviation (e.g. EMA2). In this experiment, FSL1, SPM2
and SPM1 have very low variability across all labels and mea-
surements which are very desirable features in neuroimaging
studies.

In summary, even though no manual segmentation was used
as a reference, we were able to gather interesting facts about the
classifiers and the evaluation methodologies. First, it seems that
computing a reference segmentation using STAPLE is not
necessary to evaluate segmentation techniques and that the
simpler Williams’ index provides very similar results. The use of
MDS plots allows for a nice overview of the inter-similarity of all
the classifiers and how close they are to a reference segmentation.
We also observed the somewhat surprising result that two input
channels can be worse than one, especially if the algorithm is not
properly tuned for it, as we suspect for FSL2. Finally, even



Fig. 8. The JC matrices are represented by 2Dmaps throughMDS (left). Residual plots for the mapping are given to assess the quality of the mapping (right). The
similarities were computed over four small sub regions of the brain.
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though there are winners and losers in our performance
evaluation, we find that most classifiers are close to each other
and that no clear clustering can be done between them. We now
turn to the validation of our evaluation techniques by introducing
manually segmented sub-regions of the brain as the gold
standard.



Table 3
Rank ordering of the classifiers by the different evaluation techniques on the sub-region data in 20 cases

kNN2 kNN1 MNI2 MNI1 FSL2 FSL1 SPM2 SPM1 EMS2 EMA2 WAT2

Williams JC WM 9 5 11 7 10 3 6 4 8 1 2
JC vs. ASRE WM 10 5 9 4 11 3 7 6 8 1 2
JC vs. MSRE WM 10 5 9 4 11 3 7 2 8 1 6
Williams JC GM 8 4 9 7 11 3 5 1 10 6 2
JC vs. ASRE GM 8 3 9 6 11 1 7 2 10 5 4
JC vs. MSRE GM 9 3 10 4 11 2 6 1 8 5 7
Williams JC CSF 9 4 8 6 10 1 3 2 11 7 5
JC vs. ASRE CSF 6 4 10 2 5 1 7 3 11 9 8
JC vs. MSRE CSF 8 5 10 3 9 2 4 1 11 6 7

The number in each entry corresponds to the ranking of the technique according to the measurement.
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Evaluation with a manual segmentation reference

In the next few figures, we present a validation of our
evaluation techniques, as described in Evaluation with a manual
segmentation reference under the section on Statistical analyses.
Individual segmentations of subsets of twenty brains are compared
against each other, STAPLE’s ASRE, as well as MSRE, the
manual segmentation reference estimate based on manual tracings
from three expert human raters.

In the mean/std plots (Fig. 7), we have the following ordering.
For CSF, FSL1 is ranked first according to William’s Index,
STAPLE ASRE, and STAPLE MSRE. For GM, Williams’ index
rates SPM1 first, and WAT2 second. According to STAPLE
ASRE, FSL1 and SPM1 are first with KNN1, EMA2 and WAT2
rated second. For STAPLE MSRE, SPM1 is first and FSL1 is
second. For WM, EMA2 is ranked first by Williams’ index,
WAT2 is second. EMA2 is first, FSL1 and WAT2 are second,
when compared to STAPLE ASRE. STAPLE MSRE rates EMA2
first with FSL1 and SPM1 second. Table 3 shows the ranking
assigned to each classifier by the different evaluation methods.
Overall the ordering is quite similar and the same five or six
classifiers share the top three spots for all measures. We note also
a slightly different ordering than in Evaluation with no manual
segmentation reference under the Results section, due to the
smaller number of subjects and dramatically smaller number of
voxels tested (the entire cerebellum and basal ganglia have been
Fig. 9. JC score against STAPLE MSRE: Red, WM; Green, GM; Blue, CSF. The t
WM).
ignored). In the MDS plots (Fig. 8), we have displayed all eleven
segmentations, the three manual raters, and two STAPLE
reference estimates: one based only on the automatic classifiers
(ASRE) and one based only on the manual raters (MSRE). The
residual plots between true distances and the MDS mapping
distances are still quite good, although the 2D mapping seem to
underestimate shorter distances and overestimate large ones. The
interesting result here is that it is possible to visually separate the
three manual segmentations from the eleven automatic ones. One
can almost see two clusters: (i) manual raters and (ii) automatic
classifiers. Even more interesting is the fact that ASRE is
relatively far from MSRE, suggesting that a manual segmentation
is indeed necessary for accurately assessing the performance of
segmentation results. We further explore this fact by looking at
JC against MSRE for the top performer in each class, ASRE and
the manual segmentations. Our results are presented in Fig. 9. For
each tissue class, ASRE does not perform as well as the best
automatic classifier and all automatic classifiers significantly
underperform compared to the manual raters. One should also
note the relatively higher variability of the manual raters’ scores
compared to more consistent automatic techniques.

With respect to variability, FSL1 and MNI1 are very good
performers. One should also note the relatively high variability of
the manual segmenters, reinforcing the idea that building ground
truths based on a single expert rater may not be the best
approach.
op in each class is represented (FSL1 for CSF, SPM1 for GM and EMA2 for



Fig. 10. Testing independence: MDS maps and their residual plots of the JC matrices of the classifiers' error maps (containing both False Positive and False
Negative).
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Fig. 11. Testing scalability: In this experiment, different subsets of the classifiers were compared (top left, all 11 classifiers; top right, 8 classifiers; bottom left, 6; bottom right, 4). Although the exact performance
measure differs from experiment to experiment, the respective rankings of the classifier is relatively well preserved. Red, WM; Green, GM; Blue, CSF.
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Discussion

Common agreement and bias

The main hypothesis underlying the common agreement
principle is the notion that each classifier makes decisions
independently from the others. In fact, it is more complex as
this independence is conditioned by the underlying truth and the
performance parameters of each classifier. This notion is central to
both Williams’ Index and STAPLE. As the truth and performance
are not known a priori, one cannot test for independence and
generally needs to assume classifiers that make highly uncorre-
lated mistakes. Given our seven segmentation methods, one could
wonder whether our results are not biased towards a subgroup of
them. Our main concerns are the following. First, FSL, EMS,
EMA, SPM are all EM algorithms and it is possible they have
similar behaviors and bias the common agreement. Second, as
pointed out in the section on Segmentation algorithms, many of
the algorithms rely on training data and/or a spatial prior atlas. It
is also likely that techniques with the same atlas will have similar
outputs.

Luckily, in our experiments, we have designed a reference
standard based on manual segmentation and we can further
investigate this notion of independent decisions. In order to test for
the potential biases, we performed the following experiment: for
each segmentation output and each label, an image of all
wrongfully labeled voxels was created as a binary volume in
which all False Positive and False Negative voxels have been
assigned the value 1. This process was done for all classifiers over
all cases where manual segmentations were traced. MSRE was
used as the ground truth segmentation to decide which voxels were
misclassified. All resulting error maps were then compared to each
other using JC. In essence, we are trying to evaluate the amount of
overlap of the errors made by each classifier. A plot where all
classifiers are at equal (preferably large) distance from each other
would be ideal. Of note, the expected distance (1− JC) between
two randomly generated images is 2/3. Thus an observed distance
over 0.5 would be very encouraging. Our observation is that the
overall distance between each segmentation method is fairly
Fig. 12. Evaluating performance on a synthetic generated brain from the M
homogeneous. The average inter-classifier (1− JC) value is 0.65,
with 0.07 standard deviation; the minimum distance is 0.44.

MDS plots were created to inspect the data and detect possible
clusters (Fig. 10). The residual plot show significant disagreement
between the (1− JC) matrices and the 2D distances. It could be
because all classifiers are equally distant from each other, making
the mapping extremely difficult. Unfortunately, one cannot make
this conclusion purely based on the plots, so one should be careful
not to draw strong statements from these plots. For GM and WM,
the data cannot be easily assigned to clusters, but some similarity
trends are observable. SPM1 and SPM2 are always quite close to
each other, KNN1, KNN2 and WAT2 also tend to be quite close,
especially when segmenting GM. Note that the 2D MDS plot may
show different distances as the mapping from high dimensional
space to 2D distorts the distances. The techniques are thus not
entirely uncorrelated, but it appears they make reasonably
independent decisions, or more accurately, independent misclassi-
fications. We are thus confident that the common agreement is not
strongly favoring a specific subset of techniques. For CSF
however, one can see that there is an observable separation
between two-channel and one-channel classifiers. Indeed it is not
too surprising as CSF is almost not visible in T1w images. This
may result in a bias when comparing one to two channel results. In
addition, manual segmentations were only performed on T1 images
and the MSRE is thus biased. Further experiments would be
needed in order to thoroughly address the effect of this bias on the
results for CSF when comparing one- to two-channel algorithms.

Scalability

One important aspect of the evaluation framework presented
here is whether the notion of common agreement scales well.
Assume that we had a complete evaluation, without a ground truth,
of twenty classifiers, it is possible that one could choose ten
classifiers out of the twenty, rerun the evaluation on only those and
get completely different rankings than when using all twenty. In
order to test for this eventuality, one could create all combinations
of subsets of size 3 to n−1 classifiers, and compare the results with
the n classifiers evaluation. Unfortunately, the combinatorial nature
ontreal Neurological Institute. Red, WM; Green, GM; Blue, CSF.



Table 5
Results for the one-way ANOVA F test showing that the evaluation
measurements among the algorithms are truly different

One-way ANOVA k−1 df n−k df F p

JC vs. MSRE WM 10 10 9.56 b0.0001
JC vs. MSRE GM 10 10 9.72 b0.0001
JC vs. MSRE CSF 10 10 14.14 b0.0001
JC vs. ASRE WM 10 10 8.00 b0.0001
JC vs. ASRE GM 10 10 8.22 b0.0001
JC vs. ASRE CSF 10 10 30.88 b0.0001
Williams JC WM 10 10 9.02 b0.0001
Williams JC GM 10 10 6.45 b0.0001
Williams JC CSF 10 10 16.04 b0.0001

The sub-regions for which manual segmentations are available were used
(20 subjects).
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of this process would imply a unreasonably large number of
experiments to perform (1980 for a total of 11 classifiers). We thus
computed the JC against STAPLE’s standard reference estimate on
the full data set without ground truth but only using 8 classifiers, 6
classifiers, and 4 classifiers. We present the results in Fig. 11 as
mean/std plots of JC scores against each newly created automatic
segmentation reference estimate. Our observation is that although
the performance measurement varies as the common agreement is
built from a subset of the classifiers, the ranking scales quite well,
even when only 4 classifiers are used.

Using a standard ground truth

We have claimed that it is essential to test the algorithms on our
data set in order to get a sensible assessment of performance for our
specific segmentation problem. Nevertheless, in this section, we
check if one can get similar results using a readily available ground
truth. To our knowledge, no publicly available data repository exists
with manually delineated WM, GM and CSF of the entire brain and
two inputs similar to our data set (T1w and T2w). There are data sets
that have a T1w image and nice segmentations of the gray matter
such as the Internet Brain Segmentation Repository (http://www.
cma.mgh.harvard.edu/ibsr/data.html), but they rarely have CSF
segmentations or multiple input images (e.g. T1w, T2w and PD).We
thus turned to the Montreal Neurological Institute (MNI) normal
brain phantom (http://www.bic.mni.mcgill.ca/brainweb/) and down-
loaded the following sequences: a T1-weighted image and a T2-
weighted both with voxel size of 1 mm3, 3% noise and 20% intensity
inhomogeneities (Collins et al., 1998). We then ran all segmentation
algorithms on this single case and compared the outputs to the
ground truth provided by the MNI. The results are presented in Fig.
12. As we expected, the results are quite different from the ones
observed on our own data set. The MNI algorithms tend to perform
best, as they may have been trained on this particular ground truth,
which would bias the performance evaluation. One should note
however that it is difficult to make a fair comparison as this is only
one case and that variability and robustness cannot be assessed in
this context.

Testing performance variability in the evaluation measurements

An important question which has to be answer is whether the
variability in the evaluation measurements analyzed along the
paper comes from the variability within algorithms due to the finite
nature of the data (40 cases were used) or whether it can truly be
attributed to the variability among algorithms, the latter allowing
the ranking among algorithms to make sense. Several approaches
Table 4
Results for the one-way ANOVA F test showing that the evaluation
measurements among the algorithms are truly different

One-way ANOVA k−1 df n−k df F p

JC vs. ASRE WM 10 30 27.25 b0.0001
JC vs. ASRE GM 10 30 23.85 b0.0001
JC vs. ASRE CSF 10 30 136.02 b0.0001
Williams JC WM 10 30 23.55 b0.0001
Williams JC GM 10 30 22.76 b0.0001
Williams JC CSF 10 30 51.13 b0.0001

The whole 40 data sets are used.
can be used to answer this question. One possible solution is to
select pairs of algorithms and to run a student t test in order to
know whether the evaluation measurements for two algorithms are
significantly different from each other. However, this means 55
tests for each label and for each measurement which is far too
many tests to perform. Another simple solution to have some
insight into this problem is to run a one-way ANOVA F test to
reject the hypothesis that all 11 classifiers perform similarly for a
given measurement.

In Table 4, the obtained results are shown for labels WM, GM
and CSF using the JC as the similarity measure with respect to
ASRE and the Williams’ index using JC as well. The obtained p-
values are always lower than 0.0001 which means that all the tests
were passed and that the variability among the evaluation
measurements are truly due to differences among the raters
(algorithms). Finally, a last set of tests using the MSRE were also
performed. In this case, we use only the sub-regions for which the
manual segmentations were performed for 20 out of the 40
subjects. The tests were run for the same measurements as before:
JC with respect to ASRE, the Williams’ index using JC and, in
addition, JC with respect to MSRE, as for the sub-regions MSRE is
available. Similar p-values are achieved as shown in Table 5: the
analyzed measurements clearly indicate that the algorithms behave
significantly different.

Conclusion

In this paper, we investigated evaluating automatic segmenta-
tion without having a ground truth. Common agreement was used
as the foundation of our comparison study. We chose the Jaccard
Coefficient as a metric to measure agreement between two
segmentations. We then used three different methods to evaluate
and visualize the notion of common agreement. Of these three
methods, the Williams’ Index provided us with a simple and
efficient way of measuring whether a particular classifier agreed
with all other classifiers as much as they agreed with each other.
STAPLE provided a more comprehensive tool by simultaneously
computing the performance of each algorithm and creating a
reference segmentation based on their outputs. Finally, MDS
allowed us to visually assess the similarity between all the different
segmentations.

Using these three techniques, we ran a set of experiments to
evaluate 11 different classifiers over 40 data sets. First, we found
that Williams’ Index and STAPLE give very similar results, so that

http://www.cma.mgh.harvard.edu/ibsr/data.html
http://www.cma.mgh.harvard.edu/ibsr/data.html
http://www.bic.mni.mcgill.ca/brainweb/
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for a quick study we would recommend the use of Williams’ Index
as it is much faster to compute. We also found the MDS plots very
informative to quickly inspect the data and detect possible clusters.
With regards to algorithm performance, our findings suggest that
most classifiers tested perform quite well, except for FSL2. We
also found that FSL1 tends to get better performance overall.

We also validated our evaluation techniques by creating a
reference standard based on expert raters’ manual segmentations.
Unfortunately, due the size of the images and the number of cases,
human experts traced only four small sub-regions of the brain in
twenty cases. A reference estimate was then created for these four
regions by combining all experts’ segmentations using STAPLE.
The evaluation procedures were repeated but only using the subset
of data for which we had this partial ground truth. We found that
the ranking of the segmentation techniques was similar whether
they were compared to common agreement or ground truth.
However, our results also showed that the expert raters did have a
common notion of truth that was not detected by the automatic
classifiers. The MDS plots were especially interesting as they
showed two distinct clusters of classifiers: the human raters on one
side and the automatic segmentation algorithms on the other side,
suggesting that our experts shared some prior knowledge not
properly modeled by automated classifiers.

Other considerations such as possible bias towards a subgroup
of the different classifiers, scalability and a discussion on using a
unrepresentative ground truth have been presented. We found that
our selection of classifiers was well balanced, that our technique
scales well, even when only a few classifiers are used to compute
agreement, and that using a ground truth that does not accurately
represent our data set can give very different performance results.

Overall, we feel confident that a number of interesting and
important observations can be made from an evaluation pipeline
based on common agreement alone. That is, outliers can be easily
detected, strongly consistent or highly variable techniques can be
readily discriminated, the overall similarity between different
techniques can be assessed, and a reasonable ranking of techniques
can be established. However, we also note that common agreement
has to be used with special care. For instance, if one algorithm
clearly outperforms the others, it will be considered an outlier
which is clearly undesirable. This is unlikely to happen in practice,
especially for brain tissue segmentation, as the field is mature and
techniques tend to perform similarly. Nevertheless, if one needs
refined measurements of segmentation accuracy, a carefully
designed ground truth is desirable. We conclude that although
not perfect, using evaluation techniques purely based on common
agreement is certainly meaningful.
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