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Abstract. In this work, we present an active contour scheme to simul-
taneously extract multiple targets from MR and CT medical imagery. A
number of previous active contour methods are capable of only extracting
one object at a time. Therefore, when multiple objects are required, the
segmentation process must be performed sequentially. Not only may this
be tedious work, but moreover the relationship between the given objects
is not addressed in a uniform framework, making the method prone to
leakage and overlap among the individual segmentation results. On the
other hand, many of the algorithms providing the capability to perform
simultaneous multiple object segmentation, tacitly or explicitly assume
that the union of the multiple regions equals the whole image domain.
However, this is often invalid for many medical imaging tasks. In the
present work, we give a straightforward methodology to alleviate these
drawbacks as follows. First, local robust statistics are used to describe the
object features, which are learned adaptively from user provided seeds.
Second, several active contours evolve simultaneously with their interac-
tions being governed by simple principles derived from mechanics. This
not only guarantees mutual exclusiveness among the contours, but also
no longer relies upon the assumption that the multiple objects fill the
whole image domain. In doing so, the contours interact and converge to
equilibrium at the desired positions of the given objects. The method
naturally handles the issues of leakage and overlapping. Both qualitative
and quantitative results are shown to highlight the algorithm’s capability
of extracting several targets as well as robustly preventing the leakage.

1 Introduction

Extracting anatomically and/or functionally significant regions from medical
imagery, i.e., segmentation, is a challenge and important task in medical im-
age analysis. One common practice consists of user initialization with one or
several clicks (often called “seeds”) in the target, and the algorithm then takes
over to extract the desired object. A simple but intuitive example using such
strategy is the region growing method [1]. Although the formalism is simple and
straightforward, it reflects the two key roles of the user initialization: Position:



the positions of the initial seeds indicate the estimated position of the target;
Feature: the image information in a given neighborhood of the seeds should be
employed to learn the necessary characteristics of the desired object as well as
to drive the segmentation. Nevertheless, original region growing only depends on
the image intensity, and thus is many times not suitable for noisy and textured
imagery. Furthermore, the segmentation boundary is not guaranteed to be as
smooth as many times required. To address the first problem, Pichon et al. used
robust statistics for better modeling of the image features at the locations of the
seeds, and a fast marching algorithm to grow the segmentation contour [2]. Var-
ious active contour methods evolve a contour (curve or surface) in a variational
manner to utilize both image information and contour geometry; see [3–11] and
the references therein. The method proposed here follows this general philosophy,
but in contrast to many active contour methods which only utilize the position
information of the seeds, here we makes full use of the image information around
the seeds in an adaptive fashion. Basically, the target object characteristics are
learned online from the user inputs. Then the active contour evolves from the
given places and converges to the desired boundary of the target.

Moreover, another desired feature for segmentation is the ability to simultane-
ously extract multiple objects. This can be quite advantageous in medical image
analysis, where several related targets all need to be captured. However, most
active contour algorithms are tailored to handle only one target at a time. Thus,
the given algorithm needs to be executed sequentially several times in order to
obtain the required multiple objects. However, since the individual segmentation
processes do not interact with each other, it is difficult to guarantee mutual ex-
clusiveness among contours. To address that, multiple object segmentation has
been discussed in several papers [12–17]. In these works, the algorithms require
the contours to be mutually exclusive (not overlapping). In addition, they also
assume that the union of the regions bounded by the contours must be equal
to the entire image domain. However, this is usually not a valid assumption for
many medical imaging tasks. Our methodology does not rely on this assump-
tion, which makes it more suitable for many medical imaging problems. This is
accomplished by incorporating simple principles from mechanics into the con-
tour interactions, which also handles the aforementioned problem of overlapping.
Thus the algorithm naturally treats the issue of leakage. Moreover, researchers
in [18, 19] used the shape prior to achieve the multiple target objective. However,
not only that requires the learning data set and process for the shape prior, but
also the mutual exclusiveness among the contours are not guaranteed.

2 Method

If we consider the segmentation process in our own visual system, we observe
that when human is recognizing the objects in a scene, several basic steps take
place in sequence [20]. We will illustrate this via an example. Suppose that
we want to trace out the boundary of both the liver and the right kidney in
medical imagery. First, prior anatomy knowledge drives our attention to the
right abdominal region. Second, we focus at an area where we believe to be



most “liver-like,” and learn the liver characteristics in this particular image.
With such knowledge, we then move our focus to enclose more tissue that looks
similar to those representative regions. Usually, such similarity ends when we
reach a remote area. In particular, at the boundary where the liver touches
the right kidney, the decision is difficult. Under such a situation, we apply a
similar procedure to the kidney, and we come back to the same ambiguous region.
However, this time with the information from both sides (liver and kidney),
internally we perform a competition: we compare the current voxel with both
the liver and the kidney to decide which boundary should advance, so the other
should retreat. Finally, the boundaries of liver and kidney are placed at the
balanced locations of the competition.

The segmentation scheme presented in this paper is a mathematical model for
the above process. It is a semi-automatic method because the first step above
is achieved by the user providing a label map indicating different targets by
different labels. Each subsequent step is handled by an automatic algorithm and
is detailed in what follows below.

2.1 Online feature learning

Denote the image to be segmented as I : Ω → R where Ω ⊂ R
d is an open set and

d ∈ {2, 3}. Likewise, the user provided label map is denoted as L : Ω → N∪ {0}
where 0 indicates background and non-zero positive integers indicate the target
object labels. For ease of discussion, in this paper, we assume the distinct labels
to be consecutively ranging from 0 to N , an arbitrary positive integer. Moreover,
the labeled region can be defined by several “clicks”, and does not have to be close
to the desired boundary. Next, voxels with the non-zero labels are categorized
into different “seed groups” as Gi = {x ∈ Ω : L(x) = i}.

In order to fully utilize the information given by the label map, we note that
the seed group not only indicates the location of the target, but also provides
some sample voxels contained in it. Hence, instead of making general assumptions
on the target characteristics such as brighter/darker than surrounding area, we
can learn them in an online fashion. Often times, the image intensity alone is not
descriptive enough. Hence, a feature vector is extracted at each voxel, forming
a feature image f : Ω → R

Df . Subsequently, the segmentation is performed in
the feature space. There are many choices for the feature vector such as wavelet
coefficients, Fourier descriptors, Hessian matrix, etc. In this paper, we choose
local robust statistics [21, 2] because they are not sensitive to image noise, and
may be computed quickly.

To this end, for each voxel x in the image, we define the feature vector f(x) ∈
R

Df by combining several robust statistics derived in a neighborhood B(x) ⊂ Ω

around x. More explicitly, we denote MED(x) as the intensity median within
B(x). In addition, the local intensity range is also an important characteristic,
but is sensitive the noise. To address this issue, the distance between the first and
third quartiles, namely the inter-quartile range (IQR(x)), is calculated as the
second feature. Furthermore, the local intensity variance is a good candidate but
again it is sensitive to outliers. In contrast, the median absolute deviation (MAD)
is much more robust and is computed as MAD(x) := mediany∈B(x)(I(y) −



MED(x)). Consequently, we define the feature vector f(x) as:

f(x) = (MED(x), IQR(x),MAD(x))
T
∈ R

3 (1)

With the space of feature vectors thus defined, seed groups are now characterized
by the probability density function of the feature vectors estimated by:

pi(f) =
1

|Gi|

∑
x∈Gi

Kη(f − f(x)) (2)

where K is the kernel function. In this work, we use the Gaussian kernel. Its
variance is chosen to be η times the MAD of the seed group. η is preset to be
0.1, and we have found that this works for all the cases tested.

2.2 Contour evolution

To simplify the notation, we present the contour evolution in 2D. However it is
noted that the method can be easily extended to 3D. In fact, all the experiments
in Section 3 are in 3D. First, we denote the family of evolving closed contours
as Ci : [0, 1] × R

+ → R
2. Without interactions among contours (interaction is

addressed in Section 2.3 below), each contour evolves independently in order to
minimize the energy functional:

Ei(Ci) :=

∫

x in Ci

(pc − pi(f(x)))dx + λ

∫
Ci

ds (3)

where pc is the cut-off probability density used to prevent the contour leak-
age [22]. Likewise, λ > 0 is the smoothness factor. Computing the first variation
of Ei and we obtain the flow of Ci:

∂Ci(q, t)

∂t
= [pc − pi(f(Ci(q, t))) + λκi(q, t)] N i(q, t) (4)

in which N i is the inward unit normal vector field on Ci and κi is the curvature
of the contour.

2.3 Contour interaction

Although the pc term in equation (3) helps to prevent contour leakage, in many
cases the result is not sufficiently satisfying. Indeed, it often results in the
problem that certain regions are over-segmented, while some others are under-
segmented. The leakage issue, i.e., making decisions in a transitional region, is
sometimes a difficult task even for the human visual system. However, one par-
ticular strategy the visual system takes, is to approach the decision boundary
from both sides by competition, rather than preventing the leakage from a single
direction. To this end, we enable the interaction amongst the previously indi-
vidually evolving contours using standard principles from Newtonian mechanics.



First, we regard the right hand side of equation (4) as the force applied on the
infinitesimal curve segment at the position Ci(q, t) =: p ∈ R

2. Now with the
interaction among curves, such a curve segment will also experience forces from
other curves:

F ext
i (p) = −

∑
j 6=i

∫
Cj

e−|p−Cj(w,t)|(pj(f(p)) − pc)N j(p)dw (5)

Accordingly, the curve flow equation for Ci is now updated as:

∂Ci(q, t)

∂t
= [pi(f(Ci(q, t))) − pc − λκi(q, t)] N i(q, t) + F ext

i (Ci(q, t)) (6)

The exponential term controls the “influence range” of the force. When curves
are far away, this term reduces the F ext

i effectively to zero. Moreover, using
the “sparse field level set” implementation [23], the computation of F ext

i is very
efficient. In general, the contour evolution scenario is as follows: At the outset,
the contours do not touch each other because the seeds are sparsely scattered
in the domain. Thus each F ext

i is approximately 0 and each contour evolves
individually. As the evolution proceeds, the contours get closer and the mutual
interactions begin to take place. Moreover, they will compete and finally rest at
balanced (equilibrium) positions. Throughout the whole process, the contours are
governed by the action/reaction principle from mechanics, and will never overlap
with each other, which is a necessary feature for multi-object segmentation.

3 Implementation, Experiments and Results

Numerically, the contour evolution is implemented using the sparse field level set
method for fast computation and flexibility in contour topology [23]. Moreover,
in computing the robust statistics, the neighborhood size B(x) is fixed at 3 ×
3 × 3. This value was used throughout all of our tests. Similarly, the pc, λ in
equations (6) are respectively fixed at 0.1, 0.3 for all of the tests. In what follows,
we demonstrate the application of the proposed method in T1 weighted MR brain
imagery and CT abdominal data, to illustrate the algorithm’s robustness to the
imaging modalities and noise. The results are also quantitatively evaluated.

3.1 Vervet brain segmentation

We first test on a T1 weighted MR images of the brain of vervets. In order to
highlight the leakage problem as well as how the proposed multi-object scheme
solves this problem, initially, only the white matter is segmented. As shown in
Figure 1(a), the contour leakage gives a final result that contains not only white
matter but also part of cerebellum. However, using the proposed method to seg-
ment several related objects gives the result shown in Figure 1(b). It can be seen
that the final labeling of the cerebellum, shown in white, not only fully captures
the cerebellum region, but also effectively prevents leakage from intruding into
the white matter. Furthermore, we show the 3D views of the multiple segmented



objects: white matter, cerebellum, and ventricle. To highlight the region where
the contour interaction between the white matter and cerebellum helps prevent
leakage, we show the view from both posterior and inferior. It can be observed
that there is no intersection between the contours. In particular, the cerebellum
contour nicely “pushes” the white matter contour out, and so prevents leakage
into the cerebellum.

(a) (b) (c) (d)

Fig. 1. In Subplot 1(a), we only segment one object (white matter). However, the contour leaks into
part of cerebellum and part of brain stem. In 1(b), when segmenting several objects simultaneously,
the white label for cerebellum effectively prevents the leakage. 3D plots include posterior 1(c) and
inferior 1(d) views. It can be observed that there is no intersection between the surfaces.

3.2 Quantitative analysis for ventricle and caudate nucleus

In this second experiment, we extract both the ventricle and the caudate nucleus
from MR images and present the results both qualitatively and quantitatively.
In the experiment, the caudate nucleus is a difficult object to extract due to
the poor contrast with its surrounding tissues. In fact, if we only place seeds
in the caudate, we get the result shown in Figure 2(a) where the large leakage
is circled. On the other hand, if we also places some seeds around caudate, we
also capture some portion of white matter as shown in Figure 2(b) in almond
color. Simultaneously, the caudate shape is kept intact and no leakage occurs.
The almond part can be discarded because the caudate is the only object of
interested and the final result is shown in Figure 2(c).

(a) (b) (c)

Fig. 2. If only place seeds in caudate we get segmentation in Subplot 2(a) where the leakage is
circled in yellow (viewing from superior-right). After putting some auxiliary seeds in the surrounding
tissue we get results in the sagittal view in 2(b) where the caudate shape is kept intact. Discarding
the auxiliary region and the caudate is shown alone in 2(c). (Sagittal view from right.)

Performing the same scheme on another subject gives the results in Fig-
ure 3(a) and 3(b) where we show both the segmentation and the original image.
In addition to the caudate, the method is also applied on ventricle which is



an easier segmentation task. In total, we performed 10 tests on different sub-
jects. The Dice coefficients are computed against expert segmentations, and are
plotted in Figure 3(c).

(a) (b) (c)

Fig. 3. Subplot 3(a) and 3(b) overlay the segmentation results on the original images. The almond
region is again auxiliary for preventing leakage. Subplot 3(c) shows the Dice coefficients of segmenting
10 ventricles and caudates, comparing with expert segmentation.

3.3 Abdominal organ segmentation

The proposed algorithm is general purposed and can be used for many different
tasks. Indeed, although the previous examples only utilize the multi-object seg-
mentation capability for leakage prevention, in the last experiment, 11 different
organs/tissues are extracted from an abdominal CT image. The size of the image
is 512× 512× 204 and the running time on a machine with 3.0GHz Intel Core 2
Quad CPU and 8G memory is about 8 minutes. The result is shown in Figure 4.

(a) (b)

Fig. 4. Segmentation of heart, two lungs, liver, two kidneys, spleen, abdominal aorta, pelvis, blad-
der, skin/muscle/fat. The subplot 4(b) removes skin/muscle/fat but overlays the original image.

4 Conclusions and Future Work

In this note, we proposed a general-purpose image segmentation scheme for medi-
cal data. In particular, the image features are extracted using certain local robust
statistics as the segmentation criterion. Subsequently, the object characteristics
are learned from the user initialization which is further used to guide the active
contour evolution in a variational framework. Furthermore, we incorporate the



interactions between the contours into the evolution motivated by simple princi-
ples from mechanics. This not only effectively reduces the contour leakage, but
also results in a multi-object segmentation scheme without assuming that the
union of the segmentation regions is the entire the whole domain.

Future work includes exploring more choices for the image features, such as
Fourier/wavelet descriptors. Furthermore, we will incorporate shape priors for
the multiple targets. Combined with the contour interaction, this is expected to
further improve our results.
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