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Abstract. Shape priors attempt to represent biological variations within
a population. When variations are global, Principal Component Analysis
(PCA) can be used to learn major modes of variation, even from a lim-
ited training set. However, when significant local variations exist, PCA
typically cannot represent such variations from a small training set. To
address this issue, we present a novel algorithm that learns shape varia-
tions from data at multiple scales and locations using spherical wavelets
and spectral graph partitioning. Our results show that when the training
set is small, our algorithm significantly improves the approximation of
shapes in a testing set over PCA, which tends to oversmooth data.

1 Introduction

Shape priors are commonly used to constrain shapes obtained during the seg-
mentation and registration of biomedical images. Some of the first shape priors
were based on local smoothness constraints [1] via elastic forces or combinations
of global and local constraints [2] within the active contour framework. One
limitation of these models is possible convergence to suboptimal shapes due to
high flexibility in deformations. Statistical shape models were devised to over-
come such drawbacks by learning a shape model from a training set. In [3] PCA
was used in a framework called Active Shape Models (ASM) and has become a
standard technique for segmentation tasks [4,3]. The advantage of using PCA
as a shape prior is to restrict the segmentation task to a subspace of allowable
shapes. However, it has two major limitations. First, it often restricts deformable
shape too much, particularly if it has been trained on a relatively small number
of samples. Second, finer, more local variations of shapes are often not encoded
in eigenvectors representing the most global modes of variation in the shapes.

To address this issue, the authors in [5] have proposed a hierarchical active
shape model framework for contours in 2D medical imagery using wavelets, with
convincing results. We propose to extend this framework in two novel ways.
First we describe a multiscale representation of surfaces in 3D medical imagery
using conformal mapping and spherical wavelets. Further, we present a novel
algorithm to discover optimal independent multiscale shape variations from the
data. Spherical wavelets have been used primarily by the computer graphics com-
munity to generate multiresolution description of 3D shapes [6]. In [7], spherical



wavelets are used to analyze a manifold not topologically equivalent to a sphere
by doing a non-bijective mapping between the manifold and the sphere via the
normals. This work does not conduct statistical analysis of a shape population
and uses a basis defined on the sphere, not on the shape.

To the best of our knowledge, this is the first application of statistical analysis
to a population of 3D surfaces using spherical wavelets. By using a spherical
wavelet basis defined on the shapes and identifying independent multiscale shape
variations, we build more accurate shape priors.

2 Shape Acquisition and Registration

In this paper, we used a dataset of 39 prostate gland shapes obtained from MR
imaging. In these images ' the prostate capsule is visible and was manually seg-
mented by a radiologist. Each manual segmentation defined a 3D surface which
was extracted as a triangulated surface using the Marching Cubes algorithm. We
registered all prostate shapes in the dataset by re-triangulating the extracted
surfaces in a consistent manner, providing a point-by-point registration of all
surfaces in the dataset. This re-triangulation was done by first mapping each
surface to the sphere using a conformal (angle-preserving) mapping technique
as described in [8]. 6 Expert-specified landmark points were used to improve
the consistency of the spherical mappings. Next, interpolation was used to find
the coordinates of the original 3D surface at the vertices of a regular multiscale
subdivision of the sphere, having an octahedral structure at its coarsest scale.
Once corresponding points were identified, a Procrustes technique was used to
align the shapes in the original coordinate system.

3 Shape Representation

Once registered, all shapes have N vertices and each shape can be described by
its three coordinate functions, x,y, z € R such that the k" shape S} is a column
vector of size 3NV: Sk = [l‘k(l), ceny dik(N), yk(l), ceny yk(N), Zk(l), ceny Zk(N)]T.

Since all vertices in the shape population are registered, we interpret each
entry of Sy as a random variable and each shape as a realization from a multi-
variate probability distribution. A population of K shapes can be described by a
mean shape S = %(Zle Sk) and a set of transformations T' = [T, ..., Tjs] that
describe the variability observed in the population. Each transformation vector
T, is of size 3N where the i*" entry is a transformation applied to the i*" entry
of the mean shape with a corresponding magnitude 3, € R.

Each transformation vector, or variation mode, can be characterized by scale,
spatial location and magnitude. For scale, the variation can be global, meaning it
applies to all vertices of the shape (all of its entries are non-zero) or local, meaning
it is a sparse vector with a few non-zero entries. The non-zero entries determine
the spatial location of the variation. Characterization of local variations could
be important for shape analysis since a disease, such as cancer, could affect only
a portion of an organ’s surface. Therefore descriptive shape priors should discern
shape variations at different scales and spatial location.

! axial, T2-weighted, 120mm field of view, matrix size 256 x 256, 3.0mm thickness,
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Fig. 1. (a) Subdivision Grid. (b,c) Scaling (d,e) Wavelet Function for Different Nodes

4 Limitation of PCA in Representing Finer Shape Details

Active shape models (ASM) [3] use principal component analysis (PCA) to dis-
cover uncorrelated shape variations from a training set. ASM assumes that train-
ing shapes have a multivariate normal distribution. The modes of variation are
the eigenvectors of the data covariance matrix (major axes of the distribution).

If the training set is small, PCA favors discovery of significant global varia-
tions over local variations. Indeed, assuming a training set of K shapes with N
vertices (N > K), the rank of the covariance matrix, and number of eigenvec-
tors, will be at most K — 1. It can be shown that the eigenvectors associated
with the largest eigenvalues of the covariance matrix describe the most signifi-
cant modes of variation in the vertices [3]. This can be a feature of PCA, since
it will enforce a global smoothness constraint on shapes, but also a limitation if
shapes have important local variations, as will be shown in Section 6.

5 Multiscale shape prior using Spherical Wavelets

In this Section, we describe our technique to model the full range of variation
in a population. We first derive a multiscale analysis of the variation of shapes
in section 5.1. Section 5.2 details our shape prior for multiscale statistical shape
analysis. Section 6 shows our results and compares our technique with ASM.

5.1 Description of Spherical Wavelets

To address this limitation, we propose a shape prior that represents variations
at different scales and spatial locations. This can be achieved with wavelet basis
functions that are localized in space and characteristic scales and therefore match
a wide range of signal characteristics, from high frequency edges to slowly vary-
ing harmonics [9]. Spherical wavelets are second-generation wavelets adapted to
manifolds with non-regular grids. We briefly sketch their construction [10].

Subdivision: Spherical wavelets analyze signals on a mesh obtained from
recursive partitioning of a mesh with spherical topology. With the technique
described in Section 2, all shapes have the required mesh to conduct the analysis.
We denote the set of all vertices obtained after j subdivisions with an index
set K(j). The j + 1'* resolution mesh is obtained by introducing new nodes,
identified by an index set M(j) which subdivide existing edges (typically at
their midpoint). The complete set of nodes in the j + 1** resolution mesh is
given by K(j+ 1) = K(j)|JM(j) and shown in Figure 1(a) which represents a
portion of a triangular surface mesh at resolution j + 1.
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Flg. 2. Shape at various resolutlon levels, see text for details

Representation of shape functions: Let S be a surface and let x € R3 be
a point on S. To approximate a function f(x) we use a set of wavelet and scaling
basis functions defined on the shape and modulated by coefficients. For each
resolution level, ¢; (x) are hat-shaped scaling functions’defined at the nodes
k € K(j) and ¢, (x) are wavelet functions defined at nodes m € M(j). Wavelet
functions capture finer features since they are composed of higher resolution
(j + 1) scaling functions. Figures 1(b)- 1(e) show scaling and wavelet functions
for different values of j,k and m. Note that the support of the functions becomes
smaller as the resolution increases.

When a shape is transformed into the wavelet domain, its wavelet coefficients
are calculated 2 for all resolution levels:

= D Mowpor®) D D Vimtim(x). (1)

ke K (0) 0<j meM (j)

A shape is represented by its lowest resolution scaling coefficients and its wavelet
coefficients at all higher resolution levels. The total number of coefficients calcu-
lated by the transform is equal to the number of points representing the shape.
Each coefficient describes features at a particular scale and spatial location.

Wavelet transform of the Prostate Data: We have applied the wavelet
transform to prostate data to analyze multiscale variations in the population. We
first subtract the mean shape from all the shapes in the set. We then apply the
transform independently to the residual z,y and z coordinates of the N vertices
of the shape. The k' shape in a population of K shapes can be described by a
vector of wavelet coefficients of size 3N:

Fk - {)\0 k?AO k?Aé,k7’Y]@,ma’Y‘;{ma’Y;,m|j = 07 ,4,7’71 € M(.])’ ke K(O)} (2)

Figure 2 shows a wavelet decomposition of a prostate. Figure 2(a) is the shape
before decomposition. Each Figure 2(b)- 2(f) is the mean shape plus the cumu-
lative signals up to that resolution. We observe more high frequency content as
the resolution increases.

5.2 Spherical Wavelets and Construction of Shape Priors

The shape prior is the multivariate probability distribution of the coefficients,
estimated from their covariance matrix I'I’". In our experiments, we have ob-
served a very sparse covariance matrix with most of the dependency between

! varies linearly from value 1 at the vertex zx to 0 at neighboring vertices

2 by inner product with dual functions, see [10] for more details.
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Fig. 3. Band Decomp051t10n: various bands B;;, where j is the resolution and ¢ is the
band number, shown in Anterior view (A) and Posterior view (P), see text for color

coefficients at the same scale. Furthermore, for each scale we have observed clus-
ters of correlated coefficients. This is consistent with the decorrelation property
of the wavelet transform for real-world signals [9]. Given the sparseness of the
covariance matrix, we approximate the joint distribution of coefficients with the
product of distributions over smaller clusters of correlated coefficients.

Adaptive Band Selection by scale-space decomposition: For each
scale, we cluster highly correlated coefficients into a band, with the constraint
that coefficients across bands have minimum cross-correlation. Our technique is
different from [5] where the authors perform a scale-space frequency decomposi-
tion of the coeflicients by clustering coeflicients of spatially adjacent bases into
bands in each frequency plane. In this work, we cluster coefficients according
to correlation to pick meaningful bands that indicate areas of variation. Such a
decomposition can in itself be interesting for shape analysis.

To cluster correlated wavelet coefficients, we use a spectral graph partitioning
technique [11]. We use a fully connected undirected graph G = (V, E) where
nodes V' are wavelet coefficients for a particular scale. The weight on each edge
w(i, j) is the covariance between the wavelet coefficients at nodes 7 and j. A
cut(A, B) =, c 4.,ep w(u,v) is the optimal partitioning of V into two disjoint
sets A and B such that nodes within a partition have the highest covariance and
nodes across partitions have the lowest covariance.

Using this technique, we do a recursive partitioning of the coefficients into
bands. We use a stopping criteria based on the quality of the decomposition of
each set, validating whether the subdivided band correspond to two independent
distributions. Indeed, if we start with a graph G where we consider each coeffi-
cient to be a random variable and find a partition AU B = G, AN B = (), then
it is a good partition if P(G) = P(A)P(B). We can test this with the Kullback-
Leibler (KL) divergence between the joint and the product of the marginals.

In this work, we assume a multivariate Gaussian distribution for each parti-
tion and derived the KL divergence [12]:

D(P(G)||[P(A)P(B)) = 1/2log(|Xal|X'B]) — 1/210g(|Xc|) 3)
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Fig. 4. Mean Squared Reconstruction Error for various training set sizes

where X4 is the covariance matrix of P(A) and |.| is the determinant 2. If the
distributions P(A) and P(B) are independent, then their KL divergence is 0. In
practice, we do not accept a partition if D(P(G)||P(A)P(B)) > 0.1.

Band Visualization: To visualize the bands, we calculate the influence of
all wavelet coefficient in band B;; on each point x of the surface by setting
those coefficients to 1 in (1) and others to 0. If f(x) = 0, then the point is not
affected and if f(x) > 0 it is affected according to the magnitude of f(x). Using
this function as a colormap (blue= 0, red= 1), Figures 3(a)- 3(b) show the first
band for the lowest scale. The second band is the complement of the first. As ex-
pected each band has a large spatial extent and indicate two uncorrelated shape
processes on the prostate data: the variation of the anterior wall of the prostate
(typically rounded) and the variation of the posterior wall of the prostate (typ-
ically flatter). Figures 3(c)- 3(h) show three bands for the scale 3. These bands
are more localized. These are uncorrelated variations of the superior and inferior
walls of the shape, as well as an uncorrelated variations of the anterior wall at
that scale. Bands have compact support, though this is not a constraint of our
technique. The symmetry in bands 2 and 3 is also interesting, showing that both
the right and left side tend to co-vary similarly. This symmetry of variation is
plausible for the prostate, and we plan to investigate this further. Notably a
diseased organ could possibly be detected if there is a lack of symmetry.

Building the Prior Each band of coefficients is modeled as a multivariate
Gaussian that encodes a set of shape variations. To estimate their distribution
from the data, we apply PCA analysis to the coefficients in each band. The eigen-
vectors and eigenvalues of lower scale bands represent relatively global aspects of
shape variability, whereas bands at higher scales represent higher frequency and
more localized aspects of shape variability. Hence, our technique discovers shape
processes at every scale, where the processes are all the eigenvectors of all the
bands, and does not favor the discovery of global processes over local processes.
Additionally, our prior accurately encodes finer details even with small training
sets, since there exists at least B(K —1) eigenvectors for each scale with B bands.

2 In practice since X4 is often singular, we decompose it using SVD as X4 = US, UT
and estimate log|X 4| = trace(log(X’)), using only the positive entries of X’
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Flg. 5. Ground Truth (GT) and reconstruction with PCA and Multiscale priors (a-f)
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6 Experiments

We compare our technique to PCA for the task of reconstruction. We partition
our data randomly into T training samples and 39 — T testing samples, where
T = [5,10,20,30] and learn a shape prior from the training set. The prior for
PCA consists of the mean shape, the eigenvectors and eigenvalues. The prior for
our technique consists of the mean shape, the bands structure, the eigenvectors
and eigenvalues for each band. We then reconstruct shapes in the testing set.

For PCA, we project the training shape coordinates onto the eigenvectors
and translate the coordinates of the new shape to a point lying at a reasonable
distance of the training data (£ 3 standard deviation) to obtain a reconstructed
shape. For our technique, we transform the shape to its wavelet coefficients,
project and correct the coefficients for each band separately, and transform the
new coefficients back to a reconstructed shape. A mean squared error between
the vertices of the ground truth and the reconstructed shape is calculated for all
shapes in the testing set.

Figure 4 shows the reconstruction error with the multiscale prior (solid line).
It is significantly smaller than for PCA (dashed line) across all training set sizes.
The error for PCA significantly increases when the training set size decreases,
but only slightly increases for the multiscale technique.

Figures 5(a), 5(d), show a ground truth test shape and 5(b), 5(e), 5(c), 5(f),
its reconstruction with the PCA and multiscale shape priors built from 5 training
shapes. For PCA the reconstruction is very smooth. Many of the finer details are
lacking in the reconstruction. The multiscale technique incorporates both local
and global details that PCA does not encode. Figures 5(g), 5(j) show a ground
truth test shape and 5(h), 5(k), 5(i), 5(1) its reconstruction from 30 training
shapes. For PCA, the reconstruction is more accurate, but still lacks some finer
details, such as the sharper edges. Again, the multiscale technique incorporates
both local and global details that PCA misses.



7 Conclusions and Future Work

We have demonstrated that our spherical wavelet based technique is a better
shape prior than ordinary PCA when it is important to represent finer, more
localized shape variation. Our novel method finds independent shape variation
processes at multiple scales and multiple locations by adaptively clustering cor-
related wavelet coefficients. The visualization of the bands can, in itself, be an
interesting tool for shape analysis. We plan in future work to compare this choice
of L? basis to other natural bases such as spherical harmonics [13], as well as
investigate the use of wavelet packets [14]. We also plan to use it for key imaging
tasks such as segmentation. Further, we intend to build on this theory in order
to derive a natural multiscale description for discriminative shape analysis. Lo-
calized processes cannot be overlooked when discriminating among populations,
making this technique promising for localized lesions, such as tumors. Finally,
we will be applying this methodology to other types of structures, in particular,
to the caudate nucleus as part of our research in schizophrenia.

Acknowledgements This work is part of the National Alliance for Medical Image
Computing (NAMIC), funded through the NIH Roadmap for Medical Research, Grant
U54 EB005149. A. Tannenbaum and D. Nain’s work was also funded by NIH NAC

grant P41 RR-13218 and S. Haker’s work is supported by NIH grants RO1CA109246,
RO1LMO007861, R0O1CA1029246 and P41RR019703.

References

1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J.
Comput. Vis 1 (1987) 321-331
2. Terzopoulos, D., Metaxas, D.: Dunamic 3d models with local and global deforma-
tions: Deformable superquadrics. IEEE Trans. Pat. Anal. Mach. Intell. 13 (1991)
3. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training
and application. Computer Vision and Image Understanding 61 (1995) 38-59
4. Leventon, M., Grimson, E., Faugeras, O.: Statistical shape influence in geodesic
active contours. Comp. Vision and Patt. Recon. (CVPR) (2000)
5. Davatzikos, C., Tao, X., Shen, D.: Hierarchical active shape models, using the
wavelet transform. IEEE Trans. Medical Imaging 22 (2003) 414-423
6. Schroder, P., Sweldens, W.: Spherical wavelets: Efficiently representing functions
on the sphere. Computer Graphics Proceedings (SIGGRAPH 95) (1995) 161-172
7. Greenshields, I.: 3d shape approximants via spherical wavelet decompositions. 14th
Symposium on Computer-Based Medical Systems (2001) 31
8. Haker, S., Warfield, S., Tempany, C.: Landmark-guided surface matching and
volumetric warping for improved prostate biopsy targeting. MICCAI (2004)
9. Mallat, S.: Wavelet Tour of Signal Processing. Academic Press (1999)
10. Schroéder, P., Sweldens, W.: Spherical wavelets: Texture processing. In Hanrahan,
P., Purgathofer, W., eds.: Rendering Techniques ’95. Springer Verlag (1995)
11. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22 (2000) 888-905
12. Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw-
Hill (1991)
13. Styner, M., Lieberman, J.A., Pantazis, D., Gerig, G.: Boundary and medial shape
analysis of the hippocampus in schizophrenia. Medical Image Analysis 8 (2004)
14. Mohamed, A., Davatzikos, C.: Shape representation via best orthogonal basis
selection. MICCAI 1 (2004) 225-233



