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Abstract—One major problem with nonrigid image registra-
tion techniques is their high computational cost. Because of this,
these methods have found limited application to clinical situations
where fast execution is required, e.g., intraoperative imaging. This
paper presents a parallel implementation of a nonrigid image reg-
istration algorithm. It takes advantage of shared-memory multi-
processor computer architectures using multithreaded program-
ming by partitioning of data and partitioning of tasks, depending
on the computational subproblem. For three different biomedical
applications (intraoperative brain deformation, contrast-enhanced
MR mammography, intersubject brain registration), the scaling
behavior of the algorithm is quantitatively analyzed. The method is
demonstrated to perform the computation of intra-operative brain
deformation in less than a minute using 64 CPUs on a 128-CPU
shared-memory supercomputer (SGI Origin 3800). It is shown that
its serial component is no more than 2% of the total computation
time, allowing a speedup of at least a factor of 50. In most cases,
the theoretical limit of the speedup is substantially higher (up to
132-fold in the application examples presented in this paper). The
parallel implementation of our algorithm is, therefore, capable of
solving nonrigid registration problems with short execution time
requirements and may be considered an important step in the ap-
plication of such techniques to clinically important problems such
as the computation of brain deformation during cranial image-
guided surgery.

Index Terms—Brain atlas, contrast-enhanced MR mammog-
raphy, high-performance computing, intersubject registration,
intraoperative brain deformation, motion correction, multi-
threaded computations, nonrigid image registration, parallel
performance.

I. INTRODUCTION

I MAGE-TO-IMAGE registration is a common task in
biomedical image processing [1]. The problem of reg-

istration arises whenever images acquired from different
scanners, at different times, or from different subjects need to
be combined for analysis or visualization. Several fast, robust,
and accurate intensity-based rigid (with or without scaling)
image registration algorithms have been reported and validated
[2] and are commonly used for applications where a rigid
transformation is appropriate. Nonrigid image registration is
an active research area. Nonrigid methods are important for
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applications where the anatomy deforms or changes over time.
Examples include computation of brain deformation during
cranial image-guided surgery [3]–[5], correction of artifact due
to patient motion during contrast-enhanced subtraction imaging
[6]–[8], kinematic modeling of abdominal organ motion during
respiration [9], and correction of geometric distortion in MR
images [10]. Nonrigid methods are also useful for matching of
images from different subjects [11] and generating an average
atlas [12], [13].

One major problem with nonrigid image registration tech-
niques is their high computational cost. Because of this, these
methods have found limited application to clinical situations
where fast execution is required, e.g., intraoperative imaging.
This is disappointing since some of the most interesting
and important problems involve intraoperative imaging, e.g.,
computation of brain deformation during cranial image-guided
surgery. Other groups have already published results of
high-performance computing hardware to similar problems,
including rigid registration on a cluster of symmetric multi-
processors [14], nonrigid registration on a massively parallel
architecture [15], and nonrigid registration and segmentation
on a multiprocessor workstation [16]. In this paper, we ad-
dress the problem of high computation cost using a parallel
implementation that takes full advantage of modern large-scale
shared-memory multiprocessor computer architectures. We
describe in detail the strategies employed to parallelize an
algorithm based on free-form deformations using B-spline
interpolation [8] and demonstrate how the execution time of
a nonrigid image registration algorithm can be dramatically
reduced. To illustrate the benefits of parallelization, we perform
an experimental analysis of its scaling properties for three
biomedical applications. We do not consider in this work any
of the other successful nonrigid image registration algorithms,
such as methods based on fluid transformations [17], elastic
models [18], or optical flow [19]. For surveys of the field, the
interested reader is refered to [20]–[22].

II. SHARED-MEMORY PARALLEL PROGRAMMING

All CPUs in a shared-memory multiprocessor computer share
the same main memory and, thus, can work on the same data
concurrently. This is an important advantage of this type of hard-
ware over a cluster of independent workstations, as it largely
eliminates the need for explicit message passing between con-
current tasks. It is this property in particular that makes it com-
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paratively easy to parallelize an originally sequential piece of
software on a shared-memory system, especially when com-
pared to other parallel system architectures, e.g., clusters of in-
dependent workstations programmed using Parallel Virtual Ma-
chine (PVM) [23].

A programming paradigm tailored to shared-memory multi-
processor computers ismultithreaded programming[24] where
each application can branch into independent, potentially con-
current threads. Programming libraries and operating system
support for multithreaded programming are available today on
most platforms, including virtually all available Unix variants
(including Mac OS X) and recent versions of Windows. The
precise differences between multithreaded programming and
process-basedmultitaskingare beyond the scope of this paper.
Suffice it to say that, by default, all threads in a multithreaded
application share the same address space1 and that creating a
certain number of threads causes substantially less overhead
than creation of the same number of processes (we found a
factor of 50 for the system we used in the present study). Still,
it is worth noting that there is a certain amount of overhead
associated with the handling of multiple threads, so the per-
formance gain achieved by parallelization must outweigh this
overhead in order to be useful.

Multithreaded applications profit from shared-memory mul-
tiprocessors as all threads can run concurrently on the avail-
able CPUs. In case one thread gets blocked, for example, in
order to achieve exclusive access to shared data, then another
thread of the application can execute in its place. We will show
how an intensity-based nonrigid image registration algorithm
can be broken into parallel tasks that run as (almost) indepen-
dent threads. The immediate benefit of this is that these threads
can run concurrently on different CPUs, thus reducing the real-
world time the user has to wait for the result of the registration
algorithm. For the purpose of this paper, it is, therefore, prac-
tical to understand each thread as a “virtual CPU” that can per-
form computations at the same time as other threads do other
computations.

III. I NTENSITY-BASED NONRIGID IMAGE REGISTRATION

Intensity-based image registration algorithms optimize a
function that quantifies the degree of mutual similarity between
two images. The parameters of the similarity function are
the degrees of freedom of a transformation that maps the
coordinate space of one image (the floating image) into the
space of a second image (the reference image). Two aspects
that make nonrigid image registration a very time consuming
task are the typically large sizes of the images, resulting in high
computational cost of evaluating the similarity measure, and
the sometimes large number of degrees of freedom, resulting
in frequent repetition of the evaluation. We describe below an
intensity-based nonrigid registration algorithm, and discuss
how both of these computational issues can be addressed using
the techniques of multithreaded programming.

1In more detail, all threads share the same text and heap memory (program
code and global data), while each thread has its own private segment of the stack.

A. Image Similarity

Our algorithm computes an information-theoretic similarity
measure, normalized mutual information (NMI) [25], using dis-
crete, integer-valued bins in a two-dimensional (2-D) joint his-
togram [26], [27]. For each voxel in the reference image, the
corresponding voxel in the floating image is determined under
the current coordinate transformation. The intensity of the refer-
ence voxel in each pair determines the horizontal location of that
pair in the joint histogram while the intensity of the interpolated
floating voxel determines the vertical position of the pair. The
histogram bin indexed by the voxel intensities is incremented
by one. After all voxel pairs have been added, the approximate
joint and marginal probability distributions are computed from
the distribution of voxel pairs in the histogram bins. Finally the
marginal and joint entropies and NMI are computed from the
probability distributions.

An obvious but important observation is that two or more
joint histograms, computed from nonoverlapping partitions of
the reference image data, can be combined into a single his-
togram for the complete image by adding the values in corre-
sponding bins. This requires identical numbers of bins and iden-
tical value ranges among all the partial histograms, which can
easily be achieved.

B. Coordinate Transformation

Our implementation of nonrigid registration is a modified
version [6], [9] of an algorithm first described by Rueckertet
al. [8]. It also incorporates some features of methods presented
by other groups [10]. The geometric transformation model is
based on free-form deformations [28] represented by multilevel
B-splines [29], defined on a uniform three-dimensional (3-D)
control point grid (CPG). The control points are moved in-
dependently and define a continuous deformation of the coordi-
nate space by interpolation between them using 3-D third-order
B-splines. Specifically, the transformed coordinate of a location
( ) is computed as

(1)

Here, , , and denote the indexes of the control point cell
containing ( ), and , , and are the relative positions
of ( ) inside that cell in the three dimensions. These are
defined as

(2)

and

(3)

where , , and are the distances between the control points
in the three dimensions. The functions through are the
approximating third-order spline polynomials [29].

To ensure efficient computation of the B-spline transforma-
tion, we exploit the fact that the axes of the CPG are parallel to
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Fig. 1. Precomputation of CPG coefficients in 2-D. The CPG cell index
(i; j) is constant for all voxels within the same cell; onlyi increases by one
when crossing a cell boundary. For all voxels in the same row (horizontal gray
bar), the relative offsetu of each voxel inx direction is constant and can be
precomputed. The relative offsetv of the voxel row iny direction is constant
and identical for all voxels in that row and can be precomputed. The 3-D case
is a straightforward extension of the situation shown here.

the axes of the reference image. The coefficients, , and
through for all columns of the reference image can, there-
fore, be precomputed. Similarly,, , and through
are precomputed for all rows of the reference image and, ,
and through for all planes. Fig. 1 illustrates the
underlying principles in the simplified 2-D case.

Using the precomputed coefficients so far, we can further pre-
compute parts of (1). For all voxels of the same image row inside
the same cell of the CPG, the coefficients, , and , as well as

and , are constant, while only varies from voxel to voxel.
Therefore, and , as well as their product with
the components of the control point positions , are
constant and need only be computed once per CPG cell. Equa-
tion (1) can thus be rewritten as

(4)

where

(5)

is identical for all voxels in one row that are located within the
same control point cell. Furthermore, when entering the next
CPG cell in the -direction, i.e., when incrementingby one,
three out of four precomputed vectorscan be reused after a
simple index transformation. The easiest way to achieve this
is to precompute the sequence of all vectorsrequired for the
current row and move along this sequence as the row traverses
the CPG cells.

Computing the free-form deformation for all voxels in the ref-
erence image is the dominant computational task in our algo-
rithm. Therefore, although the implementation of the above op-
timizations is not necessarily trivial, their impact is well worth
the effort. Our experience is that aggressive precomputation of
elements of the B-spline transformations reduces computation
time by approximately 50%.

C. Multilevel Deformation With Adaptive Grid Refinement

Before parallelizing an algorithm, an essential first step is to
improve its efficiency as much as possible. Aggressive precom-
putation of elements of the B-spline transformation is one way
to improve efficiency, as discussed in Section III-B above. An-
other important strategy is to use a multiresolution deformation
approach with adaptive grid refinement [6]. Registration starts
with a rather coarse CPG, typically 40 mm for clinical data. The
relatively small number of parameters enables rapid computa-
tion, while the large spacing of the grid allows capture of large
scale deformations of the anatomy. As registration proceeds, the
grid is successively refined by reducing the space between the
control points by factors of two, thus modeling increasingly lo-
calized deformation. Refinement itself is done in a way that pre-
serves precisely the deformation generated by the coarse grid
before refinement. The formulas to achieve this are based on
some fairly simple substitutions that can be found in [9], gener-
alized from the 2-D case described by Leeet al. [29].

In order to keep computation times low even with large
numbers of parameters required by fine-resolution control
point grids, those control points that do not affect any regions
of interest are fixed. Their locations are then no longer degrees
of freedom of the transformation and need not be considered
during registration. In particular, a control point is fixed if
the 4 4 4 control point neighborhood it influences has
little structure (intensity variation) as determined using a local
entropy criterion described in [6]. This efficiently fixes control
points in the image background. In practice, the adaptive
disabling of control points typically leads to a reduction of the
number of degrees of freedom of the nonrigid transformation by
a factor of at least two, sometimes as much as five, depending
on the particular images. Not only does this reduce the number
of parameters to be considered during gradient estimation
considerably, but it also reduces the overall dimension of
the search space, thus on average reducing the number of
optimization steps required to achieve convergence.

D. Optimization

The degrees of freedom of a B-spline based transformation
are the coordinates of the control points . They are inter-
preted as absolute positions and initialized as

(6)

For a CPG with control points, the total number of
parameters is . For finding the optimal param-
eters that maximize the NMI image similarity measure between
reference and floating image, we employ an iterative process
using a multiresolution line search algorithm [9]. Our method
is a variant of the Downhill–Simplex algorithm [30], [31] re-
stricted to the direction of the steepest ascent and consists of the
following steps.

1) Compute global image similarity.
2) Estimate gradient of image similarity.
3) Search for optimum along gradient direction using re-

peated evaluation of global image similarity.
4) Repeat from step 1) until no further improvement can be

achieved.
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Fig. 2. Partitioning of 3-D image and assignment of partitions to threads
for global image similarity computation. Each thread generates a 2-D joint
histogram from its partition of the reference image and the corresponding
region of the floating image. These partial histograms are added to form the
global joint histogram for NMI computation.

The key steps of the above procedure involve computing the
similarity measure between reference and floating image as well
as an estimate of its gradient with respect to the transformation
parameters. These are the two steps accounting for the bulk of
the algorithm’s computational cost, although for very different
reasons. Computation of image similarity involves processing
large amounts of data, in particular evaluating the nonrigid co-
ordinate transformation for every single voxel in the reference
image. On the other hand, the gradient computation step deals
with relatively small chunks of data only and thus has to eval-
uate the nonrigid transformation only for a small number of
voxels at a time. However, the number of these chunks is equal
to the number of parameters of the coordinate transformation,
which is typically very large. So while evaluation of the global
image similarity measure is a single expensive task, gradient
computation is a repetition of many tasks, each single one of
which is rather inexpensive. It is for this difference that two
different strategies are applied in order to parallelize the two
computations.

IV. PARALLEL IMPLEMENTATION

A. Computation of Image Similarity

Evaluation of the similarity measure is a global operation
that involves the complete image. We parallelize this step by
breaking the data into equally sized partitions. Each thread is
assigned one of these partitions and computes its contribution
to the similarity measure. Fig. 2 illustrates the principle. In de-
tail, we assign to each thread a continuous range ofrowsof the
reference image. This allows us to efficiently generate trans-
formed grid coordinates for a complete image row at a time by
exploiting constant terms in the B-spline function, as described
in (4).

The voxel pairs encountered by each thread are stored in sep-
arate 2-D histograms (Fig. 2). After finishing its part of the com-
putation, each thread adds the entries of the histogram it created
to the global histogram. This step needs to be kept mutually ex-
clusive and is, therefore, protected by a mutex lock. It makes
sense, however, to have each thread add its data to the global
data structure rather than having the main thread collect all par-
tial results. This way, threads that finish before the others can
use the extra time for completing part of a task that, otherwise,
the main thread would have to perform sequentially.

B. Gradient Computation

Estimation of the gradient of the image similarity mea-
sure is achieved by means of the common finite-difference ap-
proximation

(7)

where is the vector that hasas the th element and all zeroes
otherwise. Due to the compact support of the B-spline functions
(moving any control point affects only its 44 4 neighbor-
hood), the computation of and is identical
to the computation of outside that neighborhood of the
control point controlled by theth parameter. One can, there-
fore, precompute the 2-D histogram corresponding to and
substitute only the voxel pairs that are affected by moving the
current control point.

Hence, computing any particular element of the gradient
is a local operation that needs to consider only a small fraction
of the image data per parameter. It therefore makes no sense to
assign parts of the image data to multiple threads as the com-
putational cost of gradient computation is caused by the large
number of parameters (up to several hundreds of thousands fre-
quently occur in practically relevant cases). This step is instead
parallelized by assigning an equal number of the parameters to
each of the threads which then compute the respective compo-
nents of the gradient. We do not start a new thread for each pa-
rameter as this would cause substantial computational overhead.
For the same reason, and because the algorithm would not scale
for more than two CPUs, we do not let one thread compute the

contribution while another thread computes thepart. In-
stead, we create the given number of threads and have each work
on a subset of parameters.

One of the advanced features of our algorithm is the adaptive
fixing of control points in areas with little image information
in order to reduce serial processing time (see Section III-C). As
an immediate consequence, the sequence of fixed and moving
control points (and therefore parameters) depends on the partic-
ular image. It can, therefore, not be assumed that equally sized
continuous sets of parameters all contain the same number of
active parameters. In order to distribute those evenly among all
threads, each runs through a list of all parameters, counting the
ones that are variable. Out of these, it chooses the ones that have
an index congruent to the respective threads indexwhen di-
vided by the number of threads, i.e., . This prin-
ciple is illustrated for three threads in Fig. 3.

It is obvious that a thread with small index is more likely
to encounter more parameters to deal with than a thread with
a higher index. We therefore start threads in the order of their
index and collect their results in the reverse order (see Fig. 4).

C. Thread Implementation and Run Time Analysis

We implement and evaluate the algorithm described above on
an SGI Origin 3800 computer with 128 MIPS R12K processors
running at 400 MHz (Silicon Graphics, Mountain View, CA).
The operating system is Irix 6.5 with a single kernel image ar-
chitecture. Our algorithm is coded entirely in C++ and compiled
using version 7.3.1.2 of the MIPSpro compiler suite. Threads
are implemented using the POSIX threads library. POSIX
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Fig. 3. Assignment of function parameters to threads for gradient computation
(three threads). All passive parameters are handled by thread #0, i.e., the
respective gradient vector elements are set to zero. All active parameters are
assigned to the threads using a cyclic schedule. For the passive parameters
marked with a * for thread #0, the respective gradient component is set to zero,
consuming almost no computation time.

Fig. 4. Timing of thread creation and completion. Threads that are expected
to run longer than others are started first and their results collected last. The
subtask with the highest indexn is not actually started as a thread but runs as
part of the main thread.

threads were chosen over the proprietary interface
provided by SGI in order to ensure portability. For example, we
also successfully use the identical software package compiled
with version 3.0.2 of the GNU C++ compiler on multiprocessor
Sun workstations (Sun Microsystems, Palo Alto, CA) running
Solaris 7. Also, the interface with kernel-based threads
is commonly recommended for I/O-intensive applications
while the user-space POSIX threads are recommended for
CPU-intensive applications, due to the substantially reduced
overhead of the latter, which further supports our decision to
use POSIX threads rather than the interface.

The real time required to complete a task onparallel
processors can be approximated as

(8)

where is the serial (nonparallelizable) portion of the compu-
tation and is the parallel portion. The parameters, and
can be determined by linear regression of measured CPU times
versus the inverse number of CPUs . Conversely, one can de-
fine the speedup as one out of several metrics for parallel per-
formance. Given the above definitions, the speedup forCPUs
can be expressed as

(9)

This relationship, usually expressed as an inequality to account
for parallelization overhead, is generally known as “Amdahl’s
Law” [32]. It is obvious from this expression that the speedup
of a parallel algorithm does not continue to increase with in-
creasing number of processors. Since only the parallel compo-
nent scales while the time required to complete the serial com-

ponent remains constant, there is a theoretical limit for the max-
imum parallel speedup, denoted as

(10)

A technical problem for the performance analysis of a parallel
algorithm arises from the requirement to accurately measure
computation time. Although one can easily determine the total
CPU time of the registration process with a call to the
library function, this is not the information we are after. In fact,
the returned value represents thesumof the processing times
spent byall processors, which is virtually invariant with respect
to the number of CPUs. Instead, we need to determine the com-
putation time of thelongest running thread. For obvious rea-
sons, one cannot simply use a stop watch for this, as its mea-
surements would be strongly affected by the system load during
execution of the registration task.

Operating system support for computation time accounting
on the other hand is only available for processes and not for user-
space threads. Fortunately, using the aforementioned
function, concurrent child processes can be created that share
the address space of the parent process and from a programmer’s
point of view behave very much like threads. However, as each

process is a separate kernel entity, computation time ac-
counting can be performed by comparing the computation time
of the parent process versus the sum of computation times of
parent and all child processes. Using the interface, the

function from the standard C library provides conve-
nient access to all necessary information. Thus implemented are
two versions of our algorithm: one for clinical application using
the portable and more efficient POSIX threads and one for per-
formance measurement using the less efficient and proprietary
but accountable interface.

V. APPLICATION RESULTS

To empirically investigate the scaling properties of the non-
rigid image registration algorithm described in this paper, it was
applied to image data from three biomedical applications. For
each application, four registration problems were randomly se-
lected from the available data. Each registration was performed
several times with varying degrees of parallelism: The algorithm
was run serially and with two- through 16-, 32-, 48-, and 64-fold
parallelism.2 Due to the the operating system configuration on
the supercomputer used in this study, parallel computation on
more than 64 CPUs was not available to us. Execution times
were obtained with the implementation using the func-
tion for thread creation.

A. Intraoperative Brain Deformation Analysis

Purpose: All image-guided neurosurgical systems that use
preoperative images assume that the head and its contents be-
have as a rigid body, i.e., that the intraoperative positions of
anatomical structures of interest are related to the positions of
these structures in the preoperative images by a rigid-body trans-

2It should be pointed out that the creation of threads has a certain compu-
tational overhead. Furthermore, no more threads than the available number of
CPUs can run concurrently. Therefore, the number of threads created should in
general not exceed the number of CPUs.



ROHLFING AND MAURER: NONRIGID IMAGE REGISTRATION IN SHARED-MEMORY MULTIPROCESSOR ENVIRONMENTS 21

Fig. 5. Pre- and intraoperative brain MR images. Left: preoperative image; center: intraoperative image after rigid registration; right: intraoperative image after
nonrigid registration.

Fig. 6. Combined visualization of pre- and intraoperative brain MRI. Top
row: edges extracted from intraoperative image overlaid onto corresponding
preoperative image; bottom row: subtraction of corresponding pre- and
intraoperative image; left column: after rigid registration; right column: after
nonrigid registration. Note that after nonrigid registration, the sign of almost
all nonzero pixels in the subtraction image is positive. This is the result of
contrast applied during surgery; it does not indicate misalignment of pre- and
intraoperative image.

formation (sometimes scaling is also used to account for incor-
rect image voxel dimensions). Brain deformation between the
time of imaging and the time of surgery, or during surgery, in-
validates this assumption and consequently introduces an im-
portant source of error. Image-guided neurosurgical procedures
can now be performed using intraoperative MR imaging [33],
[34]. Brain deformation is also a concern for such procedures
because it may be desirable to make intraoperative use of pre-
operative images (e.g., from other modalities) or information
derived from preoperative images (e.g., a surgical plan). It is
obviously important to compute the deformation transformation
quickly so that surgery is not delayed by waiting for the regis-
tration algorithm to execute.

Image Data: Fig. 5 shows coronal slices from pre- and in-
traoperative images of a patient previously used for quantitative
analysis of brain deformation under craniotomy [3], [5]. This
is one out of four patients for whom we performed parallelized
nonrigid registrations as part of this paper.

Fig. 7. Computation time versus inverse number of CPUs for nonrigid
registration of pre- and intraoperative 3-D MR head images. Each symbol
represents one subject; the bold lines represent the result of the linear regression
fit of the measured data per subject.

TABLE I
COEFFICIENTS OFPARALLELIZATION FOR NONRIGID REGISTRATION

OF PRE-AND INTRAOPERATIVE 3-D MR HEAD IMAGES. REGRESSION

COEFFICIENT WAS R > 0:9995 FOR ALL FOUR CASES.
UNITS OFT (�),A, AND B ARE TIME IN SECONDS

Results: All nonrigid brain registrations were performed
starting with an initial CPG spacing of 30 mm that was refined
to 15 mm. The original image data was resampled to 2 mm
voxel size at the first deformation level and 1 mm voxel size
at the second level. Visual inspection of edge overlay and
subtraction images such as those illustrated in Fig. 6 supports
that the resulting deformation transformations are relatively
accurate. Using 64 CPUs, computing the nonrigid coordinate
transformation between the pre- and intraoperative images
shown in Fig. 6 took about 60 seconds. For the three other
pre- to intraoperative brain registrations we performed, the
computations took between 50 and 102 s (mean 67 s). The
theoretical lower bound for the computation time of all four
cases was below 30 s; the theoretical upper limit for the parallel
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Fig. 8. Pre- and postcontrast breast MR images. Left: precontrast image; center: postcontrast image after rigid registration; right: postcontrastimage after nonrigid
registration. A massive contrast-enhancing lesion can easily be detected when comparing pre- and postcontrast images.

Fig. 9. Maximum-intensity projection of MR mammography subtraction
image. Left: after rigid registration; right: after nonrigid registration.

speedup was between 87 and 132 (mean 104). Fig. 7 shows
a plot of the computation times versus the inverse number of
CPUs with a linear regression fit. Table I gives all computation
times and the performance coefficients determined using linear
regression.

B. Contrast-Enhanced MR Mammography

Purpose: By subtracting images of the same patient acquired
before and after the injection of contrast, vascular structures and
contrast-enhancing lesions can be localized and visualized. A
frequent problem with such techniques is artifacts in the sub-
traction image caused by patient motion between the pre- and
postcontrast scans. Since this motion typically involves local
deformations, especially in areas such as the abdomen or the
breast, nonrigid registration is required to correct for patient mo-
tion [6]–[8].

Image Data: As part of the present investigation repre-
senting such problems, we have included four patients from a
previous study on artifact reduction in MR mammography [6].
Fig. 8 shows typical sagittal slices from one of these patients.

Results: The CPG was refined to a final resolution of 5 mm,
and the original image data was used during the last step of
the registration process. When the subtraction image is rendered
in 3-D using maximum intensity projection (MIP), substantial
motion artifacts become apparent that cannot be compensated
for by rigid registration (Fig. 9, left image). After nonrigid reg-
istration, these artifacts disappear almost completely (Fig. 9,
right image) or are, in more complicated cases, at least sub-
stantially reduced. Absolute computation times are appreciably

Fig. 10. Computation time versus inverse number of CPUs for MR
mammography registration. Each symbol represents one subject; the bold lines
represent the result of the linear regression fit of the measured data per subject.

TABLE II
COEFFICIENTS OFPARALLELIZATION FOR NONRIGID REGISTRATION OF

PRE- AND POSTCONTRASTBREAST MR IMAGES. REGRESSION

COEFFICIENT WAS R > 0:9995 FOR ALL FOUR CASES.
UNITS OFT (�),A, AND B ARE TIME IN SECONDS

Fig. 11. Central axial slice from individual confocal microscopy image (left)
of a bee brain and corresponding segmented label image (right). Every gray level
in the label image represents a different anatomical structure. Due to limitations
of reproduction, different gray levels may look alike.

higher than for the intraoperative brain image registration (Sec-
tion V-A), because the CPG was refined to a finer resolution.
Fig. 10 shows a plot of the computation times versus the inverse
number of CPUs with a linear regression fit. The parameters of
the fit are given in Table II. The theoretical lower bound for the
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Fig. 12. Original and deformed bee brain label images. Top row: central axial slices from randomly selected original label images; bottom row: corresponding
slice from the final image after nonrigid registration to a common reference.

computation time of all four cases was 183 s or less3 ; the theo-
retical upper limit for the parallel speedup was between 58 and
107 (mean 89).

C. Intersubject Brain Atlas Generation

Purpose: Images from a population of independent subjects
can be compiled into an average image that represents not only
average voxel values, but also average object shapes, using an it-
erative nonrigid registration process [13]. Such average images
can for example be used to quantify interindividual shape vari-
ation or to compare different subgroups of individuals.

Image Data: For this study, confocal microscopy and
segmented (label) images of 20 brains from adult, foraging
honeybees served as subjects. Details on the imaging process
can be found in [13]. The final image volume contained 84–114
slices (sections) with a thickness of 8m. Each slice had
610–749 pixels in the direction and 379–496 pixels in the

direction with pixel size 3.8 m. Subsequently, 22 areas
of interest were traced manually on each slice. Examples of
confocal microscopy and label images are shown in Fig. 11.
The label images were used for registration rather than the
original microscopy images because the latter suffer from se-
vere intensity artifacts that complicate intensity-based nonrigid
registration.

Results: All individual label images were registered non-
rigidly to a common reference, the final average shape atlas.
For the present study, four individuals were randomly selected
and registered using our parallel algorithm. Examples of char-
acteristic slices from these brains before and after registration
are shown in Fig. 12. The dependence of registration times on
the number of CPUs is shown in Fig. 13 for the first nonrigid
registration iteration applied to four randomly selected bee
brains. This particular iteration used a CPG spacing of 120m
and image data resampled to 16m voxel size. The parallel
scaling coefficients derived from fitting the computation times

3Rueckertet al.[8] reported between 15 and 30 min run time on a single-CPU
Sun Ultra10 workstation for their original implementation of the nonrigid regis-
tration method used in this paper. The mean execution time of the four patients
in our study using one CPU is approximately 185 min. However, their patient
data had 30–40 slices compared to 60 slices in our data. Also, their image ma-
trix was 256� 256 (compared to 512� 512), and they computed deformations
on a 10 mm CPG (compared to 5 mm). Given the substantially larger images
in our study (six times more voxels) and the smaller CPG spacing that we used
(two times higher resolution), the performance reported by Rueckert and the
data presented in this paper are consistent.

Fig. 13. Computation time versus inverse number of CPUs for bee brain
registration. Each symbol represents one subject; the bold lines represent the
result of the linear regression fit of the measured data per subject.

TABLE III
COEFFICIENTS OFPARALLELIZATION FOR BEE BRAIN ATLAS REGISTRATION.

REGRESSIONCOEFFICIENT WAS R > 0:9995 FOR ALL FOUR CASES.
UNITS OFT (�),A, AND B ARE TIME IN SECONDS

are given in Table III. The theoretical lower bound for the com-
putation time of all four cases was 12 s or less; the theoretical
upper limit for the parallel speedup was between 90 and 105
(mean 91).

VI. CONCLUSION

The work presented in this paper addresses one of the major
problems of clinical application of nonrigid image registration,
that is, its high computational cost. By using a currently avail-
able shared-memory multiprocessor computer, we reduced ex-
ecution times from hours to less than 1 min for several applica-
tions.

Concerning the practical usefulness of our approach, clearly
there will not be shared-memory computers with large numbers
of CPUs (64 or more) in operating rooms anytime soon. Never-
theless, given the rapidly increasing availability of high-speed
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networks with guaranteed quality of service, e.g., the Internet2,
the computational power of supercomputers is becoming avail-
able for clinical applications, e.g., computation of brain defor-
mation during cranial image-guided surgery. Also, it is impor-
tant to note that while most supercomputers installed today are
already heavily utilized, a nonrigid image registration task such
as one of the applications reported in this paper requires only a
relatively small amount of total time to finish on one of these
machines. It is usually possible to give such jobs a high priority,
resulting in virtually exclusive access to the CPU resources for a
short time. One can, therefore, easily conceive a scenario where
supercomputing centers perform intraoperative image registra-
tions for remote clinical sites in near-real time on demand. In be-
tween these high-priority but low-duration tasks, their resources
would remain available to other scientific computations that take
substantially more time to compute but for which waiting for the
result for a few more minutes can be easily tolerated.
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