

Slicer3 Tutorial

Registration Library Case 27:

DTI MRI pre-op planning: align DTI with FLAIR and T1, extensive pathol.

Dominik Meier, Ron Kikinis Sept. 2010

Introduction

- This is an example dataset of an MRI exam obtained for pre-operative planning. We seek to align the DTI with the structural reference T1 scan to transfer information about critical fiber pathways.
- There is extensive pathology in the right hemisphere and acquisition-related distortion in the DTI data
- The FLAIR provides T2-weighted contrast more similar to the DTI baseline than the T1, which makes it a good target for registration. However it has low axial resolution (4mm thick slices) that make it suboptimal as final space in which to resample the DTI.
- We therefore follow a 2-step approach: 1) we register the FLAIR to the T1 and resample to the same isotropic resolution as present in the T1; 2) we then register the DTI to the resampled FLAIR.

fixed image/target T1

fixed image/target FLAIR

moving image 2a **DTI** baseline

moving image 2b DTI tensor

Resolution & Anisotropy Issues

- The original DWI image has a voxel size of 1.96 x 1.96 x 3 mm. The DTI estimation and subsequent rotation of the tensor data can lead to strong interpolation artifacts: in this case directionality in the z-direction (inferior-superior) will "blur" across slices and lead to a systematic bias/offset in the final resample DTI image (DTI_reg1).
- It is therefore recommended to first resample the DWI to an isotropic resolution similar to the target space, and then perform DTI estimation and registration (DTI_reg2).

DTI

DTI_reg1: note green/blue color bias

• To accomplish this task we will use the following modules:

_	Volumes Module	Ē				
_	Diffusion Tensor Estimation Mod	ule	Modules:	Diffusion Tens	or Estimation	
_	BRAINSFit Registration Module	Modul	es:	BRAINSFit	-	
_	Data Module	A				
_	Resample Scalar/Vector/DWI Vo	lume	Modu	les: sample Scala	r/Vector/DWI	Volum≓
_	Resample DTI Module		Modules:	Resample DT	1 Volume	-
				'		

- Slicer version 3.6.1 or later
- Example Dataset: download and extract the dataset for this tutorial: RegLib_C27_DATA.zip, which should contain this tutorial, all original and some intermediate solution data files.
- Tutorials to complete first (optional):
 - Slicer3Minute Tutorial
 - Loading and Viewing Data
 - DTI tutorial

Registration Strategy

1.Register the FLAIR scan to the T1 (affine)

2.Register the DTI_baseline to the above registered FLAIR

3. Apply the second transform to the DTI volume.

The reason for these 2 steps is that best registration quality and robustness is achieved when image contrast and/or resolution are similar. A registration of the DTI_baseline to the T1 is a large step in both image contrast and resolution / FOV and likely to fail

We register to the T2 **<u>after</u>** it is aligned with the T1. Registering to the original T2 and then moving to the T1 would require concatenating transforms in a form not currently supported, or alternatively would require additional resampling which would reduce DTI image quality.

Register T2 (FLAIR) -> T1

- 1. Go to the "BrainsFit" module
- 2. Input: Fixed Image: T1 Moving Image: T2

3. Output:

"Slicer Linear Transform": create new, rename to "Xf1_FLAIR-T1_Affine" Output Volume: create new, rename to "FLAIR_Xf1" Check boxes for: "rigid", "affine"

Registration Parameters all defaults except Number of Samples 200,000

Resample DWI to isotropic

- 1. Go to the "Resample Scalar/Vector/DWI" module
- 2. Input: Input Volume: DWI Reference Volume: T1 Output Volume: "Create New DWI Volume", rename to "DWI_iso"

We choose the new resolution via the reference volume, i.e. the DWI will be resample into the close to isotropic voxel size of the T1 image.

3. Click: "Apply"

* Resample Scalar/Vector/DWI Volume
Parameter set DWI->DWI_iso 🖃 🗬
Status Idle
Input/Output
Input Volume DWI 🖃 🖨
Reference Volume (To Set Output Parameters) 1 =
Output Volume D1 =

DWI gradient fix:

It can happen that upon resampling the zero-gradient numbers become "NaN" entries in the gradient description, which can cause the subsequent DTI estimator to fail. If necessary we therefore first check & ev. edit the gradient description:

- 1. Go to the Volumes module
- 2. As Active Volume, select the "DWI_iso"
- 3. Select the Diffusion Editor tab. You should see the list of gradients as shown on the right. At the bottom of the box you get an evaluation that says "Gradients: VALID" or "Gradients: INVALID". If you have the latter, see if the first and possibly other gradient directions are set to NaN. If that's the case, open the gradient info of the original DWI image (procedure as above) and look up the correct values for those particular gradient entries. Then return to this volume to edit the table:
- 4. Check the *"Enable Textbox"* box. You should now be able to type and edit the gradient file.
- 5. Replace the gradient NaN numbers with the correct entries, in this case it is likely that the zero gradients were afected, i.e. change NaN NaN Nan back to 0 0 0
- 6. Continue editing until the "Gradients: VALID" note appears.
- 7. Save the DWI_iso image back to disk to maintain this fix.

	00	•
⊢ Gradia	ents	X

Active Volume:

DWL iso.

٠

Diffusion Editor					
Measurement Frame — ×					
-1	0	0	Rotate Selected	Ang	
0	-1	0	Swap Selected		
0	0	1	Invert Selected		
Gradients Gradients Coad Gradients (.txt/.nhdr) DWMRI_b-value:= 1000 DWMRI_gradient_0006:= 0 0 0 DWMRI_gradient_0001:= 0.86272 -0.359993 0.355132 DWMRI_gradient_0002:= 0.86351 0.358689					
	Gi	r <mark>adie</mark> nts: V	ALID		

DWI -> DTI conversion

We're now ready to convert the new isotropic DWI into a DTI. This conversion will produce 3 new volumes:

Convert DWI -> DTI

- 1. We next convert the DWI volume into a DTI tensor image that can be used for fiber tracking and other forms of quantifying diffusion.
- 2. The DTI Estimation module in the Diffusion / Utilities section will perform this task in a single automated step:
 - 1. Select the DWI image
 - 2. Create new DTI output image
 - 3. Create new output baseline volume
 - 4. Create new Otsu mask volume
 - 5. Leave Estimation Parameters at defaults
 - 6. Click Apply
 - The DTI_baseline output will serve as moving image for the registration
 - The Otsu mask image may be useful as mask to focus registration

 Diffusion Tensor Estimation 		
Parameter set DWI_iso-DTI_iso 🖃 🚔		
Status Completed		
^ 10		
Input DWI Volume DWI_iso =		
Output DTI Volume DTI_iso 🖃 ਵ		
Output Baseline Volume DTIase 🖃 🛋		
Otsu Threshold Mask DTI_iso_mask 🖃 🚔		
Estimation Parameters		
Estimation Parameters 🔳 LS 🔳 WLS 🔲 NL		
Shift Negative Eigenvalues		
Otsu Omega Threshold Parameter 0.5		
Remove Islands in Threshold Mask 🗹		
Apply Mask to Tensor Image 🗹		
Default Cancel Apply		

- 1. Go to the "BrainsFit" module
- 2. Input:

Fixed Image: FLAIR_Xf1 Moving Image: DTI_base

Output:

"Slicer Bspline Tansform": create new, rename to "Xf2_DTI-FLAIR_unmasked" Check boxes for: "rigid", "affine" + "Bspline" registration

Registration Parameters as shown below: Changes to defaults highlighted

 Registration Parameters 				
Transform Type				
Number Of Iterations 1500				
Number Of Samples 20000D				
Minimum Step Size 0.005				
Transform Scale 1000				
Reproportion Scale 1				
Skew Scale 1				
Number Of Grid Subdivisions 5,5,3				
Maximum B-Spline Displacement 0				

National Alliance for Medical Image Computing http://na-mic.org

🚹 🎦 Modules: BRAINSFit 🖃 🖣		
3DSlicer		
Help & Acknowledgement		
↑ BRAINSFit		
Parameter set BRAINSFit 🗕 🚔		
Status Idle		
Input Parameters		
Fixed Image Volume T2		
Moving Image Volume DTe		
* Registration Phases To Use		
Initialize with previously generated transform e		
Initialize with MomentsAlign registration phase 🗏		
Initialize with GeometryCenterAlign registration phase		
Initialize with CenterOfHeadAlign registration phase		
Include Rigid registration phase 🗹		
Include ScaleVersor3D registration phase		
Include ScaleSkewVersor3D registration phase		
Include Affine registration phase 🗹		
Include BSpline registration phase		
↑ Itput Settings (At Least One Output Must Be Specifie		
Slicer BSpline Transform Xm -		

Resample DTI

Last step is to resample the DTI with the new transform (Xf3).

This is done with the *Resample DTI Volume* Module, found in the *Diffusion / Utilities* Set

- 1. Input image = DTI Output Volume = New DTI Volume Reference Volume = T1
- 2. Transform Parameters: Transform Node = Xf3_DTI-T1_masked Select/check the *output-to-input* box
- 3. Apply

We have now the DTI in the same orientation and resolution as the T1 reference scan.

For verification: for the resampled DTI_Xf2 select "Color Orientation" from the Display tab in the Volumes module, then set fore- and background to the T1 and DTI_Xf2 respectively and drag the fade slider to a halfway position.

National Alliance for Medical Image Computing http://na-mic.org

Acknowledgements

National Alliance for Medical Image Computing NIH U54EB005149

Neuroimage Analysis Center NIH P41RR013218 -12S1 (ARRA Suppl)