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Part I: Motivation



  

Computers are Going Parallel
• Two major threads in hardware development:

– General uniprocessors are being integrated into 
parallel architectures at the package level.

– Specialized parallel processors are being adapted 
to more general computation.
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GPU Definition

• GPU: Graphics Processing Unit
• Two major components:

– Legacy Hardware for traditional video display.
– Graphics Processing Unit (GPU): Contains 

acceleration hardware for fast 2D and 3D 
image synthesis.

• Major Vendors / Brands:
– nVidia & ATI

• Parallel
– Up to 128 processors

on board. GPU



  

GPU > x86 in the Parallel World
• The GPU claims a unique spot among 

computing architectures:
– First ubiquitous parallel architecture
– Simplest computing model
– Most massively parallel
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GPU > x86 in the Parallel World
• New GPU hardware now capable of ~10x more 

GFLOPS than most recent x86 offerings [1].
• Recent results show even greater performance 

margin [2].
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• GPU's simplicity enforces the following 
performance-enhancing features:
– No operating system on board
– Dedicated local, high-speed memory
– Implicit thread barrier in hardware
– (PDE Specific) No cache issues

• At first seemingly restrictive, but ultimately 
beneficial.

• GPUs have inadvertently hit a computational 
“sweet spot” with this configuration.

GPU's Simplicity Yields Performance



  

GPU May Become Coprocessor

• Industry rumors and musings of GPU+CPU 
integration efforts:
– AMD/ATI have announced a project code-

named “Fusion” integrating a GPU and CPU on a 
single die.

– Intel reportedly claims that their upcoming 
“Nehalem” core will sport an integrated GPU [3].

– THIS JUST IN: Intel reports on Larrabee core. 
• Either way, the competition is there and 

one should expect such coupling.



  

GPU May Become Coprocessor

Slide from Douglas Carmean's (Chief Architect; Intel Visual Computing Group) 
presentation: “Future CPU Architectures -- The Shift from Traditional Models.” [4]



  

Part II: The GPU In Detail



  

Taking Apart the GPU
• The GPU is first and foremost a graphics 

renderer:
– Input: Scene Description (vertices,textures,instructions)
– Output: 2D Image

• Processing steps are always:
– Primitive Assembly: Vertices become squares, triangles 

meshes.
– Rasterization/Interpolation: Projection, antialiasing.
– Pixel Rasterization: Surface and texture rendering
– Dump to Screen: Final result hits the framebuffer

• Hardware Required:
– Highly specialized vectorized floating point unit
– On-board memory into the gigabyte range
– So called “stream architecture” (Parallel FIFO Pipeline)



  

Taking Apart the GPU: The Pipeline

Rendering a Picture: The Modern 
GPU Rendering Pipeline



  

Taking Apart the GPU: The Pipeline

•Old generation GPUs had hardware for only row 1
•New generation GPUs provide new hardware for row 2

1

2



  

Vertex Programmability Example

• Vertex processor 
takes as input a 
static geometric 
model and 
outputs new, 
dynamically 
moving model 
[5].

• Operates on each 
incoming vertex 
in parallel.



  

Fragment Programmability Example

• Shader processor 
takes as input a 
3D position and 
outputs a color 
[5].

• Operates on each 
drawable pixel on 
the screen in 
parallel.



  

Custom Vertex/Fragment Processing

• Having programmable control over the 
way vertices and fragments (pixels) are 
processed is powerful:
– VIDEO: Rendering before and after.

• This is the feature we will use for PDE 
solver implementation. 



  

Simple GPGPU Programming Overview
• Computation is achieved via the following:

– Set up the GPU to render a single polygon that 
fills the rendering screen s.t. each pixel of the 
polygon occupies one pixel of screen.

– Load data to be processed onto the video card 
as textures (2D arrays). 

– Associate a fragment shader with the polygon. 
(You write this to do computer vision).

– Render scene to memory. 
• Result is that a chosen operation is 

performed on each element of input data 
and output as a result in parallel.



  

Simple GPGPU Programming Overview

Polygon defined in 
scene with 1-1 pixel to 
output element 
correspondence.
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Input data loaded into 
2D arrays, or textures 
in video memory.
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Fragment
Shader
Fragment
Shader

Render runs 
fragment shader for 
each pixel in parallel 
to memory.



  

GPU Programming Concepts
• CPU = GPU Concept Mappings:

– Texture = Array. Extra work needed for >2D 
data.

– Function = Fragment Shader. Executed on entire 
texture at one time on per-element basis.

– Thread = 1 Pixel Evaluation.
– Program Execution = Render Pass. Implicit 

thread barrier.
• Math = GPU Concept Mappings:

– Function = Texture
– Arbitrary Kernel = Fragment Shader



  

GPU Limitations and Advantages
• GPU Limitations:

– Fragment Shaders may not communicate during 
render. Therefore not suited for:

• Large Sums
• Texture-wide Counting

– No Random-Access Output. Each shader 
outputs to exactly one, fixed, element of an 
output texture.

– Limited branching support (selector method).
– Limited iterator support (unrolled).
– Program Length Restricted.
– GPU-CPU Memory Bandwidth is an issue. Avoid 

moving data across the bus.



  

GPU Limitations and Advantages
• GPU Advantages:

– Simplicity leads to speed and ease of coding.
– Overcomes many shortcomings of many other 

more complex parallel machines.
• Several limitations are disappearing 

(CUDA):
– Communication between fragments
– Random Access Output



  

Part III: Practicum



  

OpenGL GPGPU Tool Stack
• Required Libraries/Toolset:

– OpenGL
http://berkelium.com/OpenGL/sgi-download.html

– GLUT: GL Utility Toobox
http://freeglut.sourceforge.net/

– GLEW: GL Extension Wrangler
http://glew.sourceforge.net/

– Cg
http://developer.nvidia.com/page/cg_main.html

• Application Architecture
– C Application Calls OpenGL
– Loads Cg programs 

(text files) as shaders
– OpenGL Directs Rendering/

GPU Computation



  

Steps for GPGPU Processing
• Initialize OpenGL & friends.
• Construct scene as described previously.
• Set a FrameBuffer Object as a render 

target
– Instead of the screen
– Renders to GPU memory

• Initialize Cg and load Cg program as a 
fragment shader.

• Load input data into textures
• Do renders.
• Push and Pull data to/from GPU memory



  

Steps for GPGPU Processing
• The FBO Class by Aaron Lefohn 

implements these steps nicely [7]. 
– Not state of the art; one can achieve much higher 

performance.
– We have a very fast toolbox in Prof Tannenbaum's lab 

that took >1 year to create.
• All you need to do is define shaders in the 

Cg language and apply them in 
meaningful steps.

main.cc fboClass.cc1

executable
g++

shader1.cg
shader2.cg

shader3.cg
shader4.cg

Cgc runtime

Typical GPGPU Application Structure



  

Learn By Doing: Solving the Heat Eq.
• The Heat Equation is given by:

–
• Iteratively solved by a difference equation:

–
with some initial condition 

• Where 

t1=t t∇2t

0



  

Learn By Doing: Solving the Heat Eq.
• GPGPU Implementation Outline (main.cc):

– GPGPU framework initialized via fboClass.
– Cg shader loaded which implements

– Texture A loaded with init. cond
– Texture B created. 
– For i=1..n iterations

•Render from Texture A -> Texture B w/ Cg 
shader.

•Swap Texture A with Texture B
– Pull answer out of appropriate texture to CPU 

memory.

t1=t t∇2t

0



  

Heat Equation Cg Shader
• Cg Shader code is as follows (shader1.cg):

void FragmentProgram(in float2 c           : TEXCOORD0,
                     out float b           : COLOR0,

      uniform float dt,
                     uniform samplerRECT a : TEXUNIT0) {
   left = texRECT(a, c + float2(-1,0));
   right = texRECT(a, c + float2(1,0));
   center = texRECT(a, c);
   up = texRECT(a, c + float2(0,-1));
   down = texRECT(a, c + float2(0,1));
   b = dt * ( right – 2*center + left + 
              down  - 2*center + up );
}

• Cg semantics
• DEMO



  

Cg Language Features
• Cg language supports:

– Predicates
– Iterators
– Structures / Objects
– Inheritance

fixed FragmentProgram( float2 texcoord : TEXCOORD0, 
                       uniform samplerRECT Ixsq,
                       uniform samplerRECT Iysq,
                       uniform samplerRECT u_avg,
                       uniform samplerRECT IxIy,
                       uniform samplerRECT v_avg,
                       uniform samplerRECT IxIt,
                       uniform float lambda, 
                       uniform float texwidth, 
                       uniform float texheight ) : COLOR
{
    float result;
    
    if( floor( texcoord.x ) == 0 || floor( texcoord.y ) == 0 ||
        ceil( texcoord.x ) == ceil( texwidth ) ||
        ceil( texcoord.y ) == ceil( texheight ) ) {
        result = 0.0;
    }
    else {
        result = texRECT( u_avg, texcoord ) - 
            ( texRECT( Ixsq, texcoord ) * 
              texRECT( u_avg, texcoord ) + 
              texRECT( IxIy, texcoord ) * 
              texRECT( v_avg, texcoord ) + 
              texRECT( IxIt, texcoord ) ) / 
            ( 1.0 + lambda*lambda*( texRECT( Ixsq, texcoord ) +
                                    texRECT( Iysq, texcoord )
 ) );
    }
    return result;
}



  

Very Fast PDE Implementation
• In our experience multigrid methods along 

with the GPU provide the best performance.
• Multigrid solves PDE's on grids at many 

resolutions:

• Orders of magnitude convergence 
improvements are often realized.



  

Demos
• Real-time optical flow
• Optimal Mass Transport (2D)
• Optimal Mass Transport (3D)



  

Biological Similarity
• PDE's are simple to implement:

– Homogenous
– Involve communication between few grid points
– Involve simple computations

• GPU is an array of simple processors with 
sparse interconnects.

• Visual cortex has been shown to be made 
up of connected layers of neurons, or 
simple processors, communicating with 
one another.

• Visual cortex has been shown to operate at 
multiple resolutions. Multigrid?



  

Conclusions
• Computing is about to undergo an amazing 

revolution.
• Parallelizable problems such as the 

solution of PDE's will leverage this the 
most.

• A very exciting time for both computer 
vision and computer science!

• I hope you enjoyed the talk!
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