

Implementing PDE Algorithms on the
GPU

Gallagher Pryor
Tannenbaum Class Lecture

April 17th, 2007

Part I: Motivation

Computers are Going Parallel
• Two major threads in hardware development:

– General uniprocessors are being integrated into
parallel architectures at the package level.

– Specialized parallel processors are being adapted
to more general computation.

Uniprocessor MultiprocessorParallel Spectrum

Ca
pa

bi
lit

y
Sp

ec
tr

um

x86

Shader

nVidia FX GPU
(2002)

nVidia Unified Compute
Architecture GPU

(2006:Q4)

Intel P4, AMD K8
(2005)

Intel, AMD Dual
Core (2006)

Intel, AMD Quad
Core (2007)

SUN Niagara
(2006)

IBM/Toshiba
Cell (2006)

???

GPU Definition

• GPU: Graphics Processing Unit
• Two major components:

– Legacy Hardware for traditional video display.
– Graphics Processing Unit (GPU): Contains

acceleration hardware for fast 2D and 3D
image synthesis.

• Major Vendors / Brands:
– nVidia & ATI

• Parallel
– Up to 128 processors

on board. GPU

GPU > x86 in the Parallel World
• The GPU claims a unique spot among

computing architectures:
– First ubiquitous parallel architecture
– Simplest computing model
– Most massively parallel

Uniprocessor MultiprocessorParallel Spectrum

Ca
pa

bi
lit

y
Sp

ec
tr

um

x86

Shader

nVidia FX GPU
(2002)

nVidia Unified Compute
Architecture GPU

(2006:Q4)

Intel P4, AMD K8
(2005)

Intel, AMD Dual
Core (2006)

Intel, AMD Quad
Core (2007)

SUN Niagara
(2006)

IBM/Toshiba
Cell (2006)

???

GPU > x86 in the Parallel World
• New GPU hardware now capable of ~10x more

GFLOPS than most recent x86 offerings [1].
• Recent results show even greater performance

margin [2].

GPU > x86 in the Parallel World
• New GPU hardware now capable of ~10x more

GFLOPS than most recent x86 offerings [1].
• Recent results show even greater performance

margin [2].

• GPU's simplicity enforces the following
performance-enhancing features:
– No operating system on board
– Dedicated local, high-speed memory
– Implicit thread barrier in hardware
– (PDE Specific) No cache issues

• At first seemingly restrictive, but ultimately
beneficial.

• GPUs have inadvertently hit a computational
“sweet spot” with this configuration.

GPU's Simplicity Yields Performance

GPU May Become Coprocessor

• Industry rumors and musings of GPU+CPU
integration efforts:
– AMD/ATI have announced a project code-

named “Fusion” integrating a GPU and CPU on a
single die.

– Intel reportedly claims that their upcoming
“Nehalem” core will sport an integrated GPU [3].

– THIS JUST IN: Intel reports on Larrabee core.
• Either way, the competition is there and

one should expect such coupling.

GPU May Become Coprocessor

Slide from Douglas Carmean's (Chief Architect; Intel Visual Computing Group)
presentation: “Future CPU Architectures -- The Shift from Traditional Models.” [4]

Part II: The GPU In Detail

Taking Apart the GPU
• The GPU is first and foremost a graphics

renderer:
– Input: Scene Description (vertices,textures,instructions)
– Output: 2D Image

• Processing steps are always:
– Primitive Assembly: Vertices become squares, triangles

meshes.
– Rasterization/Interpolation: Projection, antialiasing.
– Pixel Rasterization: Surface and texture rendering
– Dump to Screen: Final result hits the framebuffer

• Hardware Required:
– Highly specialized vectorized floating point unit
– On-board memory into the gigabyte range
– So called “stream architecture” (Parallel FIFO Pipeline)

Taking Apart the GPU: The Pipeline

Rendering a Picture: The Modern
GPU Rendering Pipeline

Taking Apart the GPU: The Pipeline

•Old generation GPUs had hardware for only row 1
•New generation GPUs provide new hardware for row 2

1

2

Vertex Programmability Example

• Vertex processor
takes as input a
static geometric
model and
outputs new,
dynamically
moving model
[5].

• Operates on each
incoming vertex
in parallel.

Fragment Programmability Example

• Shader processor
takes as input a
3D position and
outputs a color
[5].

• Operates on each
drawable pixel on
the screen in
parallel.

Custom Vertex/Fragment Processing

• Having programmable control over the
way vertices and fragments (pixels) are
processed is powerful:
– VIDEO: Rendering before and after.

• This is the feature we will use for PDE
solver implementation.

Simple GPGPU Programming Overview
• Computation is achieved via the following:

– Set up the GPU to render a single polygon that
fills the rendering screen s.t. each pixel of the
polygon occupies one pixel of screen.

– Load data to be processed onto the video card
as textures (2D arrays).

– Associate a fragment shader with the polygon.
(You write this to do computer vision).

– Render scene to memory.
• Result is that a chosen operation is

performed on each element of input data
and output as a result in parallel.

Simple GPGPU Programming Overview

Polygon defined in
scene with 1-1 pixel to
output element
correspondence.

0,0

w,h

(1)

0101101010110
1011010101...

(2)

Input data loaded into
2D arrays, or textures
in video memory.

(3)

Fragment
Shader
Fragment
Shader

Render runs
fragment shader for
each pixel in parallel
to memory.

GPU Programming Concepts
• CPU = GPU Concept Mappings:

– Texture = Array. Extra work needed for >2D
data.

– Function = Fragment Shader. Executed on entire
texture at one time on per-element basis.

– Thread = 1 Pixel Evaluation.
– Program Execution = Render Pass. Implicit

thread barrier.
• Math = GPU Concept Mappings:

– Function = Texture
– Arbitrary Kernel = Fragment Shader

GPU Limitations and Advantages
• GPU Limitations:

– Fragment Shaders may not communicate during
render. Therefore not suited for:

• Large Sums
• Texture-wide Counting

– No Random-Access Output. Each shader
outputs to exactly one, fixed, element of an
output texture.

– Limited branching support (selector method).
– Limited iterator support (unrolled).
– Program Length Restricted.
– GPU-CPU Memory Bandwidth is an issue. Avoid

moving data across the bus.

GPU Limitations and Advantages
• GPU Advantages:

– Simplicity leads to speed and ease of coding.
– Overcomes many shortcomings of many other

more complex parallel machines.
• Several limitations are disappearing

(CUDA):
– Communication between fragments
– Random Access Output

Part III: Practicum

OpenGL GPGPU Tool Stack
• Required Libraries/Toolset:

– OpenGL
http://berkelium.com/OpenGL/sgi-download.html

– GLUT: GL Utility Toobox
http://freeglut.sourceforge.net/

– GLEW: GL Extension Wrangler
http://glew.sourceforge.net/

– Cg
http://developer.nvidia.com/page/cg_main.html

• Application Architecture
– C Application Calls OpenGL
– Loads Cg programs

(text files) as shaders
– OpenGL Directs Rendering/

GPU Computation

Steps for GPGPU Processing
• Initialize OpenGL & friends.
• Construct scene as described previously.
• Set a FrameBuffer Object as a render

target
– Instead of the screen
– Renders to GPU memory

• Initialize Cg and load Cg program as a
fragment shader.

• Load input data into textures
• Do renders.
• Push and Pull data to/from GPU memory

Steps for GPGPU Processing
• The FBO Class by Aaron Lefohn

implements these steps nicely [7].
– Not state of the art; one can achieve much higher

performance.
– We have a very fast toolbox in Prof Tannenbaum's lab

that took >1 year to create.
• All you need to do is define shaders in the

Cg language and apply them in
meaningful steps.

main.cc fboClass.cc1

executable
g++

shader1.cg
shader2.cg

shader3.cg
shader4.cg

Cgc runtime

Typical GPGPU Application Structure

Learn By Doing: Solving the Heat Eq.
• The Heat Equation is given by:

–
• Iteratively solved by a difference equation:

–
with some initial condition

• Where

t1=t t∇2t

0

Learn By Doing: Solving the Heat Eq.
• GPGPU Implementation Outline (main.cc):

– GPGPU framework initialized via fboClass.
– Cg shader loaded which implements

– Texture A loaded with init. cond
– Texture B created.
– For i=1..n iterations

•Render from Texture A -> Texture B w/ Cg
shader.

•Swap Texture A with Texture B
– Pull answer out of appropriate texture to CPU

memory.

t1=t t∇2t

0

Heat Equation Cg Shader
• Cg Shader code is as follows (shader1.cg):

void FragmentProgram(in float2 c : TEXCOORD0,
 out float b : COLOR0,

 uniform float dt,
 uniform samplerRECT a : TEXUNIT0) {
 left = texRECT(a, c + float2(-1,0));
 right = texRECT(a, c + float2(1,0));
 center = texRECT(a, c);
 up = texRECT(a, c + float2(0,-1));
 down = texRECT(a, c + float2(0,1));
 b = dt * (right – 2*center + left +
 down - 2*center + up);
}

• Cg semantics
• DEMO

Cg Language Features
• Cg language supports:

– Predicates
– Iterators
– Structures / Objects
– Inheritance

fixed FragmentProgram(float2 texcoord : TEXCOORD0,
 uniform samplerRECT Ixsq,
 uniform samplerRECT Iysq,
 uniform samplerRECT u_avg,
 uniform samplerRECT IxIy,
 uniform samplerRECT v_avg,
 uniform samplerRECT IxIt,
 uniform float lambda,
 uniform float texwidth,
 uniform float texheight) : COLOR
{
 float result;

 if(floor(texcoord.x) == 0 || floor(texcoord.y) == 0 ||
 ceil(texcoord.x) == ceil(texwidth) ||
 ceil(texcoord.y) == ceil(texheight)) {
 result = 0.0;
 }
 else {
 result = texRECT(u_avg, texcoord) -
 (texRECT(Ixsq, texcoord) *
 texRECT(u_avg, texcoord) +
 texRECT(IxIy, texcoord) *
 texRECT(v_avg, texcoord) +
 texRECT(IxIt, texcoord)) /
 (1.0 + lambda*lambda*(texRECT(Ixsq, texcoord) +
 texRECT(Iysq, texcoord)
));
 }
 return result;
}

Very Fast PDE Implementation
• In our experience multigrid methods along

with the GPU provide the best performance.
• Multigrid solves PDE's on grids at many

resolutions:

• Orders of magnitude convergence
improvements are often realized.

Demos
• Real-time optical flow
• Optimal Mass Transport (2D)
• Optimal Mass Transport (3D)

Biological Similarity
• PDE's are simple to implement:

– Homogenous
– Involve communication between few grid points
– Involve simple computations

• GPU is an array of simple processors with
sparse interconnects.

• Visual cortex has been shown to be made
up of connected layers of neurons, or
simple processors, communicating with
one another.

• Visual cortex has been shown to operate at
multiple resolutions. Multigrid?

Conclusions
• Computing is about to undergo an amazing

revolution.
• Parallelizable problems such as the

solution of PDE's will leverage this the
most.

• A very exciting time for both computer
vision and computer science!

• I hope you enjoyed the talk!

References
[1] nVidia, The nVidia CUDA Programming Guide.

http://developer.nvidia.com/object/cuda.html
[2] Rehman, Pryor, Tannenbaum. GPU Enhanced Multigrid

Optimal Mass Transport for Image Morphing, ICIP 2007 (In
Submission)

[3] J. Stokes. “Intel Aims Nehalem at AMD's Fusion: Integrated
Graphics on-die Memory Controller, SMT,” Ars Technica,
March 28th, 2007.

[4] “Intel presentation reveals the future of the CPU-GPU war,”
Beyond 3D, April 11th, 2007

[5] nVidia, Cg Users Manual.
ftp://download.nvidia.com/developer/cg/Cg_1.2.1/Docs/Cg_Toolkit.pdf

[6] A. Vance, “Intel Confirms Programmable, multi-core chip,”
The Register, April 17th, 2007;
http://www.theregister.com/2007/04/17/intel_larrabee_gpg
pu/

http://developer.nvidia.com/object/cuda.html
ftp://download.nvidia.com/developer/cg/Cg_1.2.1/Docs/Cg_Toolkit.pdf

References
[7] gpgpu.org, “GPGPU Developer Resources”.

http://www.gpgpu.org/developer/

