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Accurate identification of brain tissue and cerebrospinal fluid (CSF) in

a whole-head MRI is a critical first step in many neuroimaging studies.

Automating this procedure can eliminate intra- and interrater variance

and greatly increase throughput for a labor-intensive step. Many

available procedures perform differently across anatomy and under

different acquisition protocols. We developed the Brain Extraction

Meta-Algorithm (BEMA) to address these concerns. It executes many

extraction algorithms and a registration procedure in parallel to

combine the results in an intelligent fashion and obtain improved

results over any of the individual algorithms. Using an atlas space,

BEMA performs a voxelwise analysis of training data to determine the

optimal Boolean combination of extraction algorithms to produce the

most accurate result for a given voxel. This allows the provided

extractors to be used differentially across anatomy, increasing both the

accuracy and robustness of the procedure. We tested BEMA using

modified forms of BrainSuite’s Brain Surface Extractor (BSE), FSL’s

Brain Extraction Tool (BET), AFNI’s 3dIntracranial, and FreeSurfer’s

MRI Watershed as well as FSL’s FLIRT for the registration procedure.

Training was performed on T1-weighted scans of 136 subjects from five

separate data sets with different acquisition parameters on separate

scanners. Testing was performed on 135 separate subjects from the

same data sets. BEMA outperformed the individual algorithms, as well

as interrater results from a subset of the scans, when compared for the

mean Dice coefficient, a rating of the similarity of output masks to the

manually defined gold standards.
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Introduction

The accurate identification of the brain in a headMRI is crucial to

many studies in neuroimaging. Low-level classification of the brain

allows for the analysis of cortical structure (Fischl et al., 1999;
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Thompson et al., 2001) provides a measure of brain volume (Lawson

et al., 2000; Smith et al., 2002), improves the localization of signal in

magnetoencephalography and electroencephalography data (Baillet

et al., 1999; Dale and Sereno, 1993), can initialize a more detailed

segmentation of tissues (Shattuck et al., 2001; Zhang et al., 2001),

and can be used to prepare data for accurate image registration

(Woods et al., 1993). Automating the brain identification step in

neuroimaging studies eliminates human rater variances and can allow

for larger sample sizes by doing away with a labor-intensive step.

Brain extraction algorithms

Numerous algorithms have been written to perform brain

extraction. Most are devised to work on T1-weighted MRI data,

with several exceptions into other modalities (Alfano et al., 1997;

Bedell and Narayana, 1998; Held et al., 1997). Various methodol-

ogies are used to achieve a semiautomated (Bomans et al., 1990;

Hohne and Hanson, 1992) or fully automated (Dale et al., 1999;

Smith, 2002) separation of brain from nonbrain tissue.

Atlas registration techniques for segmentation transfer brain

labels to an individual subject (Bajcsy et al., 1983; Christensen

et al., 1996; Collins et al., 1995; Davatzikos, 1997; Miller et al.,

1993). Most perform well when defining deep structures of the brain

but may fail at the cortical surface due to the large degree of

intersubject variability in sulcal and gyral morphology. Improved

atlas techniques joining low-level tissue classifications (gray matter,

white matter, and cerebrospinal fluid) with image registration have

had more success in demarcating anatomy (Collins et al., 1999;

Kapur et al., 1996).

An early semiautomated technique for brain extraction uses edge

detection to demarcate connected tissues within a slice (Bomans et

al., 1990). Components that represent brain are manually selected

and amorphological closing operation is performed on the selections

to complete the process. Sandor and Leahy (1997) developed an

automated edge-detection technique using anisotropic diffusion

filtering, Marr–Hildreth edge detection, and a sequence of morpho-

logical processing steps to extract the brain in three dimensions.

Shattuck et al. (2001) subsequently improved upon this technique.

Slice by slice brain identification based on gray matter and

white matter intensity estimation, connected component determi-



D.E. Rex et al. / NeuroImage 23 (2004) 625–637626
nation, and morphology operations also have produced good

results (Brummer et al., 1993; Lemieux et al., 1999; Ward,

1999). Lemieux et al. (2003) further extended these techniques

to include CSF estimation for the inclusion of all intracranial CSF.

Deformable templates guided by image intensity information,

usually the search for the gray matter or CSF border, and

smoothness constraints that mimic general properties of the brain

also have been used (Dale et al., 1999; MacDonald et al., 1994;

MacDonald et al., 2000; Smith, 2002).

Meta-algorithms

A meta-algorithm uses the results of individual algorithms for

similar tasks, or subtasks, to perform the chosen task. Many meta-

algorithms have been designed to achieve higher reliability or to

attain greater accuracy using a trained system. Schroder et al.

(1999) implemented a meta-algorithm for the deconvolution of

disturbed data, called Munchhausen, to calculate blood volume

using the intravascular concentration time course of an injected

substance. They note that many deconvolution techniques vary in

their performance depending on the type of data and the nature of

the disturbance in the recorded values. Munchhausen uses a data-

driven decision rule to select from its many deconvolution techni-

ques to achieve more robust results than any individual algorithm.

Shaaban and Schalkoff (1995) and Schalkoff and Shaaban

(1999) use a meta-algorithm to solve general image processing

and feature extraction problems for two-dimensional images. A

training set showing initial images and outlining the desired

features to extract is used to solve a classification problem in an

algorithm graph. Multiple algorithm paths exist through the graph

and the training guide selection of the best processing path. The

results can be applied to new data for identification of features

defined by the training set.

Meta-algorithms also have been used previously for studies on

MRI scans. Rehm et al. (1999) implemented and validated (Boesen

et al., 2003) a meta-algorithm for brain extraction from an MRI

volume called McStrip. It uses a polynomial registration (Woods et

al., 1998) to provide a brain mask from an atlas and builds a

threshold mask from estimates of tissue class boundaries. It also

generates a BSE mask from the Brain Surface Extractor (Shattuck

et al., 2001) using many parameter sets and choosing the mask in

highest agreement with the threshold mask. The union of the

threshold mask and the BSE mask provides the final output.

McStrip outperformed three other algorithms, BSE, BET (Smith,

2002), and SPM (Ashburner and Friston, 2000) in both boundary

similarity and misclassified tissue metrics for 15 test scans.

Collins et al. (1999) implemented a meta-algorithm for gross

cerebral structure segmentation. A nonlinear registration is used to

obtain tissue labels from an atlas, and a low-level tissue classifi-

cation identifies regions of gray matter, white matter, and cerebro-

spinal fluid. The reconciliation of the two segmentations produces

a more accurate identification of cerebral structures than either

method produces on its own.

Brain extraction meta-algorithm

A single algorithm often will not adequately perform the

neuroimaging task in every subject across an entire data set. Often,

many different procedures must be attempted or manual interven-

tion utilized to achieve acceptable results. An environment that

presents many similar algorithms is a simple way to access and test
various methods. A meta-algorithm that allows the specification of

a general procedure and obtains a valid result, regardless of input

data, would allow the task of deciphering the results from many

algorithms and selecting the best procedures to be fully docu-

mented and automated.

Each of the aforementioned algorithms for brain identification

possesses strengths and weaknesses that vary with scanning

protocol, image characteristics such as contrast, signal-to-noise

ratio, and resolution, and subject-specific characteristics like age

and atrophy (Fennema-Notestine et al., 2003). Algorithms may

also vary in their accuracy in different anatomic regions. The

development of a meta-algorithm that intelligently utilizes the

strengths of the contributing subalgorithms should obtain results

that are, on average, superior to any individual algorithm. We

developed and tested such a meta-algorithm using multiple extrac-

tion procedures in concert with a registration procedure. It achieves

improved results using a variety of anatomically specified Boolean

functions to combine the results of the extractors.
Methods

Brain extraction meta-algorithm

The Brain Extraction Meta-Algorithm (BEMA) uses four freely

available brain extraction algorithms and a linear volume registra-

tion procedure, which does not require skull stripping, in concert to

achieve its results (Fig. 1). In general, the registration procedure is

used to bring a brain atlas into alignment with an individual subject

scan being processed for brain extraction. The atlas contains

information regarding which brain extraction algorithm, or com-

bination of extractors, works best identifying brain in each ana-

tomic region. The overall best combination of brain extractors for

each region, based on a training set of scans and manual demarca-

tions of brain, is then applied on a voxel by voxel basis.

The extractors used in BEMA include the Brain Surface

Extractor (BSE) (Shattuck et al., 2001) from BrainSuite (Shattuck

and Leahy, 2002), the Brain Extraction Tool (BET) (Smith, 2002)

from FSL (Smith et al., 2001), 3dIntracranial (Ward, 1999) from

AFNI (Cox, 1996; Cox and Hyde, 1997), and MRI Watershed from

FreeSurfer (Dale et al., 1999). The volume registration procedure

utilized is FLIRT (Jenkinson and Smith, 2001), also from FSL. The

T1-weighted ICBM152 average MRI (Evans et al., 1994) in

approximate Talairach space (Talairach and Tournoux, 1988) is

utilized for the whole-head atlas space. All algorithms utilized are

freely available on the World Wide Web and have been encapsu-

lated in the LONI Pipeline Processing Environment (Rex et al.,

2003), along with utility functions from the Laboratory of Neuro

Imaging, AIR (Woods et al., 1998), and FSL.

Data preprocessing

Preprocessing of the data sets for each individual extraction

algorithm was performed to provide the best possible results from

each brain extractor. BEMA begins with a FLIRT registration of

the ICBM152 average to the individual subject scan. A brain mask

is resampled to the subject to identify a region that must contain the

whole brain. This brain mask consists of voxels in ICBM152 space

where any of 200 previously aligned subjects contained any brain

tissue. The subject scan is masked and cropped to limit the search

space for the subject’s brain. The resulting volume is passed, in



Fig. 1. A simplified diagram of the Brain Extraction Meta-Algorithm conceptually showing the data flow from a raw MRI to a completed brain mask. The steps

involved in this extendable algorithm are registration, the preparation of data for each given extraction algorithm, the extraction of the brain from the MRI by

each algorithm, and the combining of the results in an improved brain mask. BEMA is implemented in the LONI Pipeline Processing Environment and is

available as a single fully encapsulated module for use within the environment.

D.E. Rex et al. / NeuroImage 23 (2004) 625–637 627
parallel, to BSE and BET for extraction. The parameters utilized

for BSE throughout this study are a sigma of 0.62 for the edge

detection and three iterations of the anisotropic filter with a

diffusion constant of 25. BET was run with its default parameters.

The results of BSE and BET are placed back in the original subject

space. AIR tools are used for all resizing and masking, ensuring

data is not normalized or blurred through the process.

The 3dIntracranial branch of BEMA uses an initial registration

mask to roughly estimate the subject’s brain location. This more

conservative mask identifies the brain using voxels in ICBM152

space where the brain was located 50% or more of the time for the

aforementioned 200 aligned subjects. The purpose of this mask is

to estimate gray and white matter intensity limits for 3dIntracranial.

The Partial Volume Classifier (PVC) (Shattuck et al., 2001) is used

to classify the estimated brain into gray matter, white matter, and

CSF tissue classes. A robust maximum white matter intensity and a

robust minimum gray matter intensity (Smith, 2002) are computed

and input to 3dIntracranial. 3dIntracranial is then executed on the

liberally masked volume from the BSE or BET preprocessing path

described above.

The ICBM152 registration to the subject’s native space is

inverted and modified to resample the subject to the required

FreeSurfer space for processing. Intensity normalization is per-

formed on the volume using MRI Normalize (Dale et al., 1999).

The normalized volume is processed with MRI Watershed and the

resulting mask is resampled back to the native subject space with

nearest neighbor interpolation.

Combining results

The results of the individual extraction paths through BEMA

are combined to form the final brain mask. A Boolean function is

stored at each voxel in atlas space that will be used to combine the

binary results of the four input extractors. This combination key is

resampled, using the FLIRT-derived ICBM152 transformation to

subject native space, to the subject scan with a nearest neighbor

interpolation and used with the extractor results to derive the

BEMA brain mask. Varying the combination function across the
voxels in atlas space allows different extractors and combinations

of extractors to be utilized for various regions of anatomy.

Experience shows that individual extraction algorithms do not

perform better across a data set when their results are reversed

(labeled background is considered brain and labeled brain is

considered background). Therefore, no Boolean functions with

inversions are allowed and a voxel’s identity is never determined

by assuming an extractor, or group of extractors, may be wrong far

more often than they are correct. With four inputs, this limits the

number of Boolean functions to 168 possible combinations. They

represent such combinations as (BSE or 3dIntracranial) identifying

the specified voxel as brain for it to be included in the brain mask

[(BET and MRI Watershed) or (BET and BSE)] identifying the

voxel as brain, any three extractors needing to agree the identity of

the voxel is brain for it to be labeled as brain, or all four extractors

needing to agree the identity of the voxel is brain. They may also

be as simple as using the results of a single extractor or always

marking a voxel as brain or not brain based on the registration

being more accurate than any other method. The choice of Boolean

logic was made for this meta-extractor implementation because of

its simplicity and the power to search the entire positive space for

the four input extractors. In addition, it is equivalent to more

complex optimization techniques, such as neural nets or statistical

methods, when applied to this limited binary problem. For a

problem with more inputs that utilizes the negative space or that

works on continuous variables, an optimization technique would

be better suited.

Training

To determine what combination of extractors works best at each

anatomic location, as represented by a voxel in ICBM152 space, a

training step was implemented. Training is performed on a repre-

sentative set of scans that possess expertly determined masks

demarcating the brain in the volumes. For optimal results, BEMA

should be retrained for data sets with novel contrast and signal-to-

noise characteristics. During training, the extractor paths in the

pipeline are processed for each individual scan in the training set



Table 1

Scan acquisition information

Data set Scanner Voxel size (mm) Acquisition

plane

Acquisition sequence

ICBM 3 T General Electric 0.9375 � 0.9375 � 1.2 Sagittal 3D-SPGR, TR = 24 ms, TE = 4 ms, FA = 35j
IPDH 1.5 T General Electric 0.78125 � 0.78125 � 1.5 Coronal 3D-SPGR, TR = 35 ms, TE = 5 ms, FA = 35j
LIJMC 1.5 T General Electric 0.86 � 0.86 � 1.5 Coronal 3D-SPGR with inversion recovery,

TR = 14.7 ms, TE = 5.5 ms

ZENIT 1.5 T General Electric 0.97 � 0.97 � 1.5 Sagittal 3D-SPGR, TR = 24 ms, TE = 8 ms, FA = 30j
NEUROVIA 1.5 T Siemens 0.86 � 0.86 � 1.0 Transverse 3D-FLASH, TR = 35 ms, TE = 6 ms, FA = 45j

ICBM—International Consortium for Brain Mapping, David Geffen School of Medicine at UCLA; IPDH—Institute of Psychiatry, Denmark Hill, London, UK;

LIJMC—Long Island Jewish Medical Center, New York, New York; ZENIT—Center for Neuroscientific Innovation and Technology, Magdeburg, Germany;

NEUROVIA—Neuroimaging, Visualization, and Data Analysis group at the Minneapolis VA Medical Center, University of Minnesota.

Scans were acquired from five different institutions on three different scanner types from two manufacturers and two field strengths with a variety of listed

protocols.
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and all brain masks for all extractors are resampled to the atlas

space using the derived FLIRT transformations. The expertly

demarcated masks are, respectively, resampled to the atlas space

as well. The trainer program analyzes each voxel in the atlas space

with each available Boolean function applied to the individual

extractor results for all training scans. The Boolean function that

most often determines the correct answer according to the expert

masks is stored in the combination key. It represents the function to

be used for that anatomic locale whenever this combination key is

used in BEMA. A user modifiable window around each voxel is

provided so that the voxel’s Boolean function may be determined

by the results of all voxels within the neighborhood of the voxel of

interest. This provides a blurring of the anatomy and removes noise

induced by registration.

Subjects

Two hundred and seventy-five subjects were amassed from five

separate studies, three different scanner types, and five different scan

protocols (Table 1) to provide five data sets consisting of 275 T1-

weighted whole-head MRI volumes. Subjects from the International

Consortium for BrainMapping (ICBM) acquired at the University of

California, Los Angeles, from the Center for Neuroscientific Inno-

vation and Technology (ZENIT), Magdeburg, Germany, and from

the Neuroimaging, Visualization, and Data Analysis group (NEU-

ROVIA) at the University of Minnesota, Minneapolis VA Medical

Center, were all healthy young adults. Subjects from the Institute of

Psychiatry, Denmark Hill (IPDH), London, UK, were schizophrenia

patients and normal controls. Subjects from Long Island Jewish

Medical Center (LIJMC) were first episode schizophrenia patients

and normal controls (Table 2). The first episode schizophrenia

patients typically received 1–2 mg of oral lorazepam before the
Table 2

Subject demographics

Data set Number of

subjects

Gender Diag

ICBM 50 23 male, 27 female All n

IPDH 53 30 male, 23 female 28 n

25 S

LIJMC 96 62 male, 34 female 34 n

62 S

ZENIT 60 30 male, 30 female All n

NEUROVIA 16 8 male, 8 female All n

Data sets from the five institutions varied in age, gender, and diagnosis (normal
scan. All subjects provided written informed consent based on the

institutional guidelines of the acquisition site.

All scans were manually assessed for voxels that correspond to

brain tissue or cerebrospinal fluid (CSF). The ZENIT, IPDH, and

LIJMC scans were assessed under the supervision of KLN using a

voxel labeling of the scans in the coronal plane and reconciled in

the sagittal and transverse planes. The ICBM and NEUROVIA

scans were assessed under the supervision of RPW using contour

tracings in the sagittal plane of the scans. KR performed additional

brain demarcations of the NEUROVIA scans using contours. The

contour demarcations were converted to voxel-based labels of the

brains for use in BEMA training and assessment.

Assessment

BEMA was trained on 25 scans from the ICBM data set, 27

from the IPDH, 48 from LIJMC, 30 from ZENIT, and 10 from

NEUROVIA. All training scans were randomly selected from their

respective group. The data sets were separated into three separate

groups for training and testing. The ICBM, IPDH, and LIJMC

training scans were combined into one set of 100 scans to produce

a single combination key for the three sets of scans. The ZENIT

and NEUROVIA scans were kept separate from the first group and

from each other to produce two additional combination keys for

their respective data sets. A single additional training set was

derived using 10 scans from each of the five data sets to test the

meta-algorithm generalized across all data sets. The combination

keys were produced with a training window of 5 � 5 � 5 mm. The

NEUROVIA gold standard segmentations were taken from the KR

segmentations of the scans, being the more internally consistent of

the two human raters. The RPW-supervised segmentations of the

NEUROVIA data were considered equally accurate for brain vs.
nosis Age (mean F SD, years)

ormal Normal male = 23.7 F 5.8; normal female = 25.0 F 5.8

ormal,

Z

SZ male = 32.4 F 7.9; normal male = 33.0 F 10.1;

SZ female = 39.9 F 10.2; normal female = 35.2 F 9.0

ormal,

Z

SZ male = 24.1 F 4.2; normal male = 35.5 F 8.6;

SZ female = 28.7 F 5.1; normal female = 20.2 F 11.0

ormal Normal male = 25.4 F 4.7; normal female = 24.3 F 4.4

ormal Normal male = 30.4 F 6.9; normal female = 23.8 F 4.5

vs. schizophrenic).
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nonbrain tissues but were not as internally consistent in the border

reconciliation within the external CSF. They were used to deter-

mine human interrater measures.

The remaining 25 scans from the ICBM data set, 26 from

IPDH, 48 from LIJMC, 30 from ZENIT, and 6 from NEUROVIA

were used to test BEMA and the individual extractors that

comprise it. MRI Watershed, 3dIntracranial, BET, and BSE were
Fig. 2. The extraction results for subject number 91 (Fig. 3) from the LIJMC data s

to white intensities show where the manual gold standard mask, and the automated

extraction falsely classified voxels as brain. Red represents where the automated e

the automated methods to the gold standard are shown in parentheses. The BET an

algorithm. The raw BET and raw BSE methods are the extractors run on their ow

atypical but demonstrative of errors that sometimes occur and are fixed by the meta

the reader is referred to the Web version of this article.)
each run on the 135 test scans in their modified forms used in the

BEMA algorithm—the FLIRT registrations and PVC preliminary

tissue classification were used to enhance the output of each

algorithm, as detailed above. Additionally, 3dIntracranial, BET,

and BSE were executed in their raw form on each of the 135 scans,

without any external aid from other programs. The raw approach

was not used for MRI Watershed, as it is not how the authors
et. Shown in blue is the subject’s original T1-weighted MRI scan. The gray

extraction result agrees there is brain. Green represents where the automated

xtraction falsely classified voxels as not brain. Dice coefficients comparing

d BSE methods are the registration-augmented versions used in the BEMA

n with no preparation of the input data. The raw BSE result seen here is

-algorithm. (For interpretation of the references to color in this figure legend,
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intended the algorithm to be used. It was designed for use after

scan placement in a FreeSurfer volume and after scan inhomoge-

neity correction. BEMA was executed on the 99 test scans from

ICBM, IPDH, and LIJMC using the combination key yielded from

their combined training scans. BEMA was executed on the 30

ZENIT test scans using the ZENIT-derived combination key and

on the 6 NEUROVIA scans using the NEUROVIA-derived com-

bination key. Additionally, BEMA was executed using the pooled

key from all five data sets on all 135 test scans to assess the ability

of a generalized key.

The Dice coefficient was chosen as the set similarity metric to

compare the extractor results with the manually derived gold stand-

ards. Its formula is 2VC / (V1 + V2), where VC is the number of voxels

the two masks share in common, V1 is the number of voxels in the

first mask, and V2 is the number of voxels in the second mask. The

Dice coefficient is 1 if the masks are exactly the same and 0 if the

masks share no common voxels. Each resultant extraction, from

BEMA, the individual extractor subalgorithms, the raw individual

extractor programs, and the NEUROVIA second human rater, was

compared to the manual segmented gold standard to produce a Dice

coefficient detailing the voxelwise similarity between the extracted

mask and the gold standard. To test for differences between the

results of the methods, t tests (paired by subject) were used.

Additional measures weremade for voxelwise false-negative and

false-positive rates of each brain extractor tested and for a gray- and

white-matter-only Dice coefficient. False-negatives are removed

voxels that were in the gold standard mask and false-positives are

included voxels that were not in the gold standardmask. The average

false-negative or false-positive percentage of each gold standard

volume was calculated for each extractor methodology and volu-

metric maps were created in ICBM152 space to report where each

extractor made false-negative or false-positive errors. The gray- and

white-matter-only Dice coefficient excluded the effects of CSF in

the accuracy of the brain extractors by using the Partial Volume

Classifier (Shattuck et al., 2001) to determine which voxels corre-

sponded to gray, white, or CSF types. The gray and white matter

voxels were combined in a single mask of brain tissue for each gold

standard and extractor mask produced, as well as for the second

NEUROVIA human rater, and Dice coefficients comparing these

masks were produced. Again, t tests paired by subject were used to

test for differences between the error rates and the gray- and white-

matter-only Dice coefficients.
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Results

An example result, for a single subject from the LIJMC data set,

is shown in Fig. 2. BEMA accounted for most of the inaccuracies

of the individual brain extraction algorithms with information from

the other extraction algorithms and the registration procedure. As

shown, a small difference in Dice coefficients relates to a notice-

able difference in brain masks. BEMAwas able to fix nearly all of

the false-negative voxels and most of the false-positive voxels.

Notable exceptions include small fractions of the superior sagittal

sinus and the transverse sinus.

BEMA’s average Dice coefficient across all subjects tested was

0.975 with a standard deviation of 0.00529. It performed superior

to, possessed significantly higher Dice coefficients than, each

individual component extraction and than the extractors run on

the raw input data when compared to the manually defined brain

masks (P b 0.001) (Table 3). BEMA also performed superior to
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the second human rater in a pairwise comparison across the six

overlapping subjects from the NEUROVIA data (P < 0.01) or

when compared across all subjects tested (P b 0.001, not paired).

These results were also valid when tested under each individual

data set (Table 3). BEMA had a higher Dice coefficient than any

other method tested on 133 of the 135 subjects studied (Fig. 3).

The two subjects where BEMA did not result in the closest match

to the manually derived masks were subjects 77 and 124, from the

LIJMC and ZENIT data sets, respectively. On subject 77, BET had

a Dice coefficient of 0.957, besting BEMA’s result of 0.951. This

was BEMA’s worst result, still superior to the worst results from all

other automated methods. On subject 124, 3dIntracranial had a

Dice coefficient of 0.9751, just beating BEMA’s result of 0.9747.

Raw 3dIntracranial failed to extract any of the presented volumes

correctly due to intensity histograms that were not accounted for in

its development. Its results have been omitted.

The standard deviation in BEMA’s Dice coefficients was

smaller than any other automated method when compared across

all data sets. The standard deviation of the human interrater Dice

coefficients across the NEUROVIA data was slightly smaller than

the BEMA result, 0.00521 vs. 0.00529. When compared across the

six overlapping subjects, however, BEMA possessed a smaller

standard deviation than the interrater results (Table 3). Within data

sets, BEMA possessed the smallest standard deviation across Dice

coefficients in all cases but one. 3dIntracranial had a slightly

smaller standard deviation in the ZENIT data set, although BEMA

possessed the higher average Dice coefficient (Table 3).

The pooled key version of BEMA was significantly less

accurate than BEMA trained for each individual grouping of the

data (Table 3). The pooled key BEMA did perform better than any

contributing extractor for the ICBM, IPDH, and LIJMC data sets

and was better overall than the contributing algorithms. It suffered

on the ZENIT and NEUROVIA data, performing worse than BSE

and 3dIntracranial on the ZENIT data set and indistinguishably

worse than BET on the NEUROVIA data set.
Fig. 3. Dice coefficient results for every test subject studied. BEMA performed su

The BEMA results were noticeably more consistent across subjects and data sets

algorithm, aided by a preregistration procedure, faired better than the raw BSE a
BEMA performed well regarding both the false-negative and

false-positive rates with a false-negative rate of 2.68% and a false-

positive rate of 2.21%. For the false-negative rate, only MRI

Watershed, 2.17%, outperformed BEMA (P b 0.001) (Fig. 4).

BEMA had a better false-negative rate than 3dIntracranial, BET,

BSE, and raw BSE (P << 0.001) and was statistically indistin-

guishable from raw BET. BEMA had a better false-positive rate

than all other automated extraction methods (P b 0.001; BSE, P

< 0.05) (Fig. 4). BEMA’s standard deviations for the false-negative

and false-positive rates were 1.26% and 0.989%, respectively,

much less than any other method.

The derived maps in ICBM152 space show quantitatively

where each algorithm made errors across the 135 test subjects

(Fig. 5). BEMA possessed smaller error rates across its map than

the other algorithms. BEMA’s only consistent error was leaving in

tissue along regions consistent with venous sinuses, an error

possessed by all the automated methods. BEMA’s rate of false-

positives along the venous sinuses was noticeably less than the

other methods. Other common errors included MRI Watershed

leaving in extra tissue along the ventral aspect of the brain,

3dIntracranial leaving out tissue all along the border of the brain,

BET leaving out tissue along the anterior borders of the frontal and

temporal lobes, raw BET leaving in ventral tissue anterior to the

brainstem as well as leaving out tissue along the anterior frontal

lobe (though less than BET running in BEMA), BSE leaving out

tissue all along the border of the brain, and raw BSE failing to

remove tissue from various regions of several brains and possess-

ing the errors of BSE running in BEMA.

The gray- and white-matter-only Dice coefficients were higher

on average for BEMA across all data sets, 0.990, than for any other

automated method (P b 0.001) (Table 4). BEMA’s results were

also statistically indistinguishable from the human interrater results

at 0.989 for the entire NEUROVIA data set. Additionally, BEMA

possessed the lowest standard deviation across the data sets,

0.00525, for any automated method. The interrater result had a
perior to every other method in every case except for subjects 77 and 124.

than any other method. The BSE and BET procedures used in the BEMA

nd raw BET procedures in most situations.



Fig. 4. The false-negative and false-positive results for each extractor averaged across all test subjects studied. Error bars are a single standard deviation.

BEMA’s results are the only method below the 3% rate for both categories. **P < 0.001 and *P < 0.05 for BEMA having a lower rate than the extractor

signified. yyP < 0.001 for the extractor signified having a lower rate than BEMA. Note that MRI Watershed possesses a lower false-negative rate than BEMA

though BEMA has a lower standard deviation of its false-negative results.
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better standard deviation than BEMA at 0.00367. BEMA did

consistently better than the other automated methods within data

sets as well (Table 4). BEMA had a higher average gray- and

white-only Dice coefficient than the human interrater result across

the six NEUROVIA test subjects, but it was not a statistically

significant result. The standard deviations of BEMA and the

interrater results within the NEUROVIA data were only slightly

different, 0.00375 and 0.00348, respectively. Raw BET and raw

BSE were left out of this portion of the study due to large errors in

the brain extractions for multiple subjects leading to improper

tissue classifications.

The training of BEMA produced three very different combina-

tion keys for the data sets they represent (Fig. 6). These combination

keys were specific to each of the data sets and would cause BEMA to

produce less than optimal results when used on the other data sets.

The registration for the ZENIT and NEUROVIA keys was robust,

leaving large areas where there is never brain and areas where brain

is always found. Other areas, near the surface of the brain, used a

single algorithm or a Boolean combination of many algorithms to

accurately identify the region. These Boolean functions extract

regions that the linear registration does not clearly separate.

The ICBM/IPDH/LIJMC key is not as homogeneous as the

other keys because it had three failures of registrations while

processing the 100 training scans. These registration errors were

left in the training because they represent real pitfalls in the data.

BEMA successfully dealt with these errors by using the brain

extraction algorithms instead of the registrations to find the deep

areas of the brain. Higher order Boolean combinations of extractors

are also found in the deep regions. They represent the surface

regions of the misregistered subjects.

Running times for the training algorithm, using a single MIPS

R12000 processor, were approximately 70 h for the ICBM/IPDH/

LIJMC key (100 subjects), 19 h for the ZENIT key (30 subjects),

and 5 h for the NEUROVIA key (10 subjects). The running times
for BEMA and its associated programs and subalgorithms, or

pipelets, including necessary pre- and postprocessing of individual

algorithm results, are shown in Table 5 for a Silicon Graphics Inc.

Origin 3000 providing 50 400-MHz MIPS R12000 processors

through a LONI Pipeline Server. BEMA took much more time,

approximately 30 min, to execute than any of the individual

extractor programs used within it. However, with multiple pro-

cessors available, BEMA ran only 5 s longer than the MRI

Watershed subalgorithm that requires a FLIRT-based registration,

an MRI Normalize step, and a couple of format conversions.

FreeSurfer’s MRI Normalize takes up most of the running time

at approximately 20 min. A meta-algorithm can only run as fast as

its slowest path. Utilizing the parallel nature of the LONI Pipeline

Processing Environment, BEMA used 3.5% more time to simul-

taneously extract three subjects, approximately 31 min, than it used

to extract one subject.
Discussion

Results

The results suggest that BEMA is consistently superior at

matching results with the gold standard examples of brain masks

than any of the individual extractors that are combined to form it.

BEMA even edges out the interrater results from the NEUROVIA

data when looking at the Dice coefficients of the raw masks.

Furthermore, BEMA possesses the lowest standard deviation in its

results of any automated method tested and is on par with the

human results, even besting the interrater results when compared

within the NEUROVIA data set. This suggests that BEMA is more

robust, producing more reliable results more often than other

methods. Additionally, BEMA’s lowest Dice coefficient was

0.951. This is better than the poorest result from MRI Watershed



Fig. 5. False-negative (red) and false-positive (green) maps of errors for each of the algorithms across all subjects tested. The maps are scaled from 0% to 100%

errors for a given voxel location in ICBM152 space. Note: Raw BSE possesses a few failed extractions showing up as false-positives that fall below detectable

levels at this scaling. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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(0.902), 3dIntracranial (0.359), raw BET (0.612), BET (0.931),

raw BSE (0.531), and BSE (0.609). Only the human interrater

result fared better in its lowest coefficient (0.958). It is also

important to note that for our purposes BSE was run with a single

set of parameters optimized across all data sets simultaneously. The

BSE algorithm’s results, specifically for the NEUROVIA data,

may improve when a different parameter set is chosen.

The BEMA combination keys produced were optimal for the

particular data sets that they were trained on. Three (ICBM, IPDH,

and LIJMC) of the five data sets were combined to produce one

combination key among them. The results of BEMA using this

combination key for all three data sets were consistently better than

the contributing extractors. This first combination key was attemp-

ted on the ZENIT and NEUROVIA data sets. It produced results

that were on par with the contributing algorithms, but no better.
The pooled combination key was fashioned for the data sets that

used 10 training scans from all five data sets. This key fared better

on the ZENIT and NEUROVIA data but still performed subopti-

mally and was marginally worse on the ICBM, IPDH, and LIJMC

data sets. New, separate combination keys were formed for the

ZENIT and NEUROVIA data sets. These combination keys

performed best on their respective test data. These results suggest

that the scanner and acquisition protocol contribute greatly to the

results of the brain extraction algorithms on the data volumes.

Some data sets were combined without diminishing the results, the

ICBM, IPDH, and LIJMC data sets, but others possessed proper-

ties that kept them from being grouped with the previous data sets,

the ZENIT and NEUROVIA data sets. Noticeable differences in

the data sets included the level of noise in the scans and the

contrast between the tissue types.



Fig. 6. The combination keys generated from each of the training sets

overlaid on the ICBM152 average. Based on the registration results, red

denotes regions that are always brain and clear voxels are regions that are

never brain. Other colors represent regions of a single extractor being used

or multiple extractors being used in one of the 162 other Boolean functions

available. The noticeable lack of a large red region in the ICBM/IPDH/

LIJMC combination key is due to a few bad registrations forcing the trainer

to use the brain extractors to elucidate regions that are usually found by the

registration procedure. The deep regions using multiple methods are around

the surfaces of the misregistered brains. These misregistrations did not have

a detectable impact on the test cases. (For interpretation of the references to

color in this figure legend, the reader is referred to the Web version of this

article.)
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The preprocessing of the data sets helped the individual

extractors that contribute to BEMA immensely. Both BET and

BSE were made much more robust with more accurate overall

results by using registration to crop out obvious nonbrain tissues.

BET’s results, however, were seemingly hampered in the anterior

frontal and temporal regions by our methodology. This can be

addressed in future BEMAversions by providing both the raw BET

and modified BET results to BEMA to enable a regional choice.
Table 4

Average gray- or white-matter-only Dice coefficients

MRI Watershed 3dIntracranial BET

ICBM 0.977 ** F 0.0126 0.930 ** F 0.194 0.980 ** F 0

IPDH 0.945 ** F 0.193 0.986 ** F 0.00546 0.989 ** F 0

LIJMC 0.968 ** F 0.0138 0.974 ** F 0.0130 0.980 ** F 0

ZENIT 0.976 ** F 0.00549 0.989 ** F 0.00393 0.982 ** F 0

NEUROVIA 0.967 * F 0.0230 0.968 * F 0.0172 0.987 F 0.

All data 0.967 ** F 0.0848 0.971 ** F 0.0852 0.983 ** F 0

Average Dice coefficient results, across all subjects studied and separated by data se

single standard deviation. Extracted brains from each procedure, and the gold stand

Volume Classifier. Only voxels of gray or white matter were kept. Dice coefficients

compared to the BEMA results. Comparison of the first human rater to the second

result for the NEUROVIA data is only for the six test subjects and the result for all

indistinguishable from the BEMA approach, as was the BET approach for only the

severe extraction errors confounding PVC’s ability to correctly classify voxels.

*P < 0.01 for BEMA having a higher mean Dice coefficient than the extractor s

**P << 0.001 for BEMA having a higher mean Dice coefficient than the extract
Finally, in its raw mode, 3dIntracranial could not process the data

sets we used. It was enhanced, and in fact given the ability to

function on these data sets, by providing it with needed intensity

parameters about the data through further automated methods.

The running time of the BEMA approach is slightly greater than

the longest subalgorithm in the pipeline. In this case, the FreeSurfer

approach requires registration and intensity normalizations that

take up most of the 30-min execution time. Given the parallel

nature of the LONI Pipeline Processing Environment, however, the

number of subjects to extract can be increased greatly to approx-

imately 45 subjects on our 50 processor Pipeline Server before a

noticeable increase in execution time occurs. Substantial running

time is required for the BEMATrainer when using a large number

of subjects. The results have shown, however, that accurate results

were also achieved for a 30- and 10-subject training session,

greatly reducing the required time to train BEMA. Additional time

savings can be obtained by reducing the per voxel window size in

the training session. A 3-mm isotropic window ran 5.5 times faster

than the 5-mm window, and no window ran approximately 140

times faster than the 5-mm window training session. The average

Dice coefficient decreased by only 0.0003 for the 3-mm window

and 0.002 for no window for the ICBM/IPDH/LIJMC data sets.

BEMA’s current implementation is within the LONI Pipeline

Processing Environment (http://www.loni.ucla.edu/Software/) and

is available through the LONI Pipeline Server to the neuroimaging

community (http://www.loni.ucla.edu/NCRR/Application/

Collaborator_Application.jsp). The pipeline implementation was

made possible by the previous inclusion of all needed algorithms

and processing modules on the LONI Pipeline Server. Recreation

of BEMA in other environments or a scripting language is also

possible but requires the acquisition and compilation of all the

required processing packages and accessories.

Improvements

As individual automated brain extraction algorithms improve,

so will BEMA. Given a representative training set and BEMA’s use

of a generalized strategy, the overall best algorithm, or group of

algorithms, for extracting a region will be employed. If an

algorithm that is used in a BEMA combination key is improved,

the results of BEMA also will improve. Retraining for a new
BSE BEMA Human

.00461 0.968 ** F 0.00999 0.983 F 0.00549

.00292 0.987 ** F 0.00390 0.993 F 0.00206

.00674 0.975 ** F 0.0107 0.989 F 0.00428

.00484 0.991 ** F 0.00321 0.993 F 0.00221

00593 0.878 * F 0.138 0.990 F 0.00375 0.986 F 0.00348

.00638 0.975 ** F 0.0360 0.990 F 0.00525 0.989 F 0.00367

t, for masks including only gray matter and white matter voxels. Errors are a

ard masks, were classified for gray, white, and CSF voxels using the Partial

were computed on these submasks. Results for each extraction method were

human rater was only available for the NEUROVIA data set. The Human

data is from all 16 NEUROVIA subjects. The human result was statistically

NEUROVIA data set. Raw BET and Raw BSE were omitted due to multiple

ignified.

or signified.

 http:\\www.loni.ucla.edu\Software\ 
 http:\\www.loni.ucla.edu\NCRR\NCRR_CollabApp.html 


Table 5

Execution times

One

subject,

one

processor

One

subject,

six

processors

Three

subjects,

one

processor

Three

subjects,

18

processors

Raw BET 29 s 29 s 1 min,

7 s

29 s

Raw BSE 21 s 21 s 1 min,

7 s

23 s

Program in

BEMA

MRI

Watershed

1 min,

15 s

1 min,

15 s

3 min,

49 s

1 min,

24 s

3dIntracranial 16 s 16 s 47 s 16 s

BET 16 s 16 s 51 s 18 s

BSE 15 s 15 s 40 s 17 s

MRI

Normalize

19 min,

52 s

19 min,

52 s

51 min,

4 s

20 min,

8 s

FLIRT 3 min,

32 s

3 min,

32 s

9 min,

39 s

3 min,

32 s

Pipelet in

BEMA

MRI

Watershed

30 min,

5 s

30 min,

5 s

82 min,

29 s

31 min,

3 s

3dIntracranial 6 min,

5 s

5 min,

8 s

17 min,

52 s

5 min,

22 s

BET 4 min,

17 s

4 min,

17 s

12 min,

6 s

4 min,

21 s

BSE 4 min,

16 s

4 min,

16 s

12 min,

3 s

4 min,

20 s

BEMA

Total

34 min,

7 s

30 min,

10 s

95 min,

33 s

31 min,

14 s

The running times for BEMA, its associated critical programs, and its

pipelets or subalgorithms with the enhancing preprocessing steps including

registration, tissue classification, volume resampling, format conversions,

as well as other ancillary steps. All results are via the LONI Pipeline

Processing Environment and a LONI Pipeline Server running on a Silicon

Graphics Inc. Origin 3000 providing 50 400-MHz MIPS R12000

processors. The number of processors shown in the table is the maximum

number of processors the environment was allowed to use in an

execution—associated speed increases reflect the parallel nature of the

environment. The single subject is the LIJMC subject used for the example

results in Fig. 2. The three subject numbers use two more random subjects

from the LIJMC data set.
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combination key may garner even more improvements. Additional

algorithms that are specifically good at a particular region of

anatomy can also help immensely. If one algorithm identifies the

superior sagittal and/or transverse sinuses well, then it can be

utilized by BEMA solely in those regions to correct that common

error.

Improvements to the registration technique will also improve

BEMA. The errors seen in registration for the ICBM/IPDH/LIJMC

data sets and their combination key did not dramatically affect the

outcomes of the test cases because they were evenly distributed in

the training and test sets, three and two failures of registration,

respectively. This allowed the meta-algorithm to overcome the

registration failures and correctly characterize regions based on

extractor results. If the failures of registration did not occur during

training, the two misregistered test cases would possess inaccurate

extractions with BEMA. Utilizing a more robust and accurate,

possibly nonlinear, registration algorithm will improve BEMA.

Registration improvements may also include using different atlas
spaces that conform better to a specific subject’s anatomy. That is,

an Alzheimer’s disease atlas space (Thompson et al., 2001) could

better identify regions in an Alzheimer’s patient than an atlas

derived from healthy young adults.

To efficiently expand BEMA past four input brain extractors, a

different approach must be taken. The total number of Boolean

functions available with n input extractors is 22
n

. With an increas-

ing number of input extraction algorithms, this quickly becomes an

intractable number of functions to search, even when not allowing

inverses to occur. This is especially true when a separate search is

done for each voxel in the volume. Instead of trying to search this

space for large numbers of extraction algorithms, a pruning step is

implemented to keep the search space small. At each voxel

location, the four most accurate extraction algorithms for the

defined neighborhood are used as the inputs to find the optimal

four-input Boolean function. Which four algorithms are chosen are

stored in a selection key volume that accompanies the combination

key. Together, these two keys and their atlas space determine which

algorithms to use and how to combine their results to get the best

possible overall outcome.

The BEMA approach can be extended to work on data sets

from varying scanners, modalities, and protocols with different

dimensions, contrast, and noise levels by being provided with

additional brain extraction algorithms and new training sets to

produce unique combination keys. The keys will utilize various

combinations of the input algorithms and may even use completely

different algorithms in some cases. This approach will not only

provide for the scans of varying contrast and noise seen here, but it

can also group extractors that work on vastly different modalities

under one generalized extraction protocol. The appropriate key for

T1-weighted, T2-weighted, PD, DTI, or multimodality data sets

would be provided to allow BEMA to use the correct procedures.

Separate keys should also exist for various subject groups, such as

children, young adults, elderly, and atrophic subjects, as they have

also been shown to be a factor in the accuracy of various extraction

algorithms (Fennema-Notestine et al., 2003). With the aid of the

LONI Pipeline Processing Environment (Rex et al., 2003), a single

module will be presented for brain extraction, and the correct

methodology will be selected by the provided combination key.
Conclusions

In our tests, BEMA was able to produce results that were of

superior accuracy and increased robustness when compared to any

of the brain extraction algorithms used in its processing. BEMA

was also on par with, and in some measures better than, the human

interrater results for the NEUROVIA data set. One drawback of

BEMA is to gain optimal performance, there exists a need to train

the meta-algorithm for new data when a data set is sufficiently

different, in contrast, noise, resolution, or possibly tissue atrophy,

from the previously trained data sets. However, new scanners and

protocols can be utilized to train a BEMA algorithm when data

acquisition begins and then the algorithm may be used with new

acquired data. Keys generated for similar scanners and protocols at

other institutions may also be useful for newly acquired data.

Additionally, as the number of informative algorithms that are

available to BEMA increases, and the quality of their results

increases, BEMA will become even more robust and capture the

best possible results for more data sets from a larger variety of

acquisitions and subject populations.
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