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ABSTRACT

Independent component analysis (ICA) has recently demonstrated considerable promise in
characterizing fMRI data, primarily due to its intuitive nature and ability for flexible
characterization of the brain function. As typically applied, spatial brain networks are assumed to
be systematically non-overlapping. Often temporal coherence of brain networks is also assumed,
although convolutive and other models can be utilized to relax this assumption. ICA has been
successfully utilized in a number of exciting fMRI applications including the identification of
various signal-types such as task and transiently task-related and physiology-related signals in
the spatial or temporal domain. Additional applications include the analysis of multi-subject
fMRI data, the incorporation of a priori information, and the analysis of complex-valued fMRI
data. In this paper, we first introduce ICA and its application to fMRI data analysis, and then

review various applications of ICA to fMRI data.



1. Introduction

What an antithetical mind! - tenderness, roughness - delicacy, coarseness - sentiment,
sensuality - soaring and groveling, dirt and deity - all mixed up in that one compound of
inspired clay!

-Lord Byron

Independent component analysis (ICA) is a statistical method used to discover hidden
factors (sources or features) from a set of measurements or observed data such that the sources
are maximally independent. Typically, it assumes a generative model where observations are
assumed to be linear mixtures of independent sources, and unlike principal component analysis
(PCA) which uncorrelates the data, ICA works with higher-order statistics to achieve
independence.

An intuitive example of ICA can be given by a scatter-plot of two independent signals s,
and s, . Figure 1.1a shows a plot of the two independent signals (s;,s,) in a scatter-plot. Figure
1.1b and ¢ show the projections for PCA and ICA, respectively, for a linear mixture of s, and s, .
PCA finds the orthogonal vectors u,,u,, but does not find independent vectors. In contrast, ICA
is able to find the independent vectors a,,a, of the linear mixed signals (s,,s,), and is thus able

to restore the original sources.

Figure 1.1: (a) The joint density of two independent signals, (b) PCA projection (U, U, ), (c) ICA projection (&, &, ) (adopted

from [1])

A typical ICA model assumes that the source signals are not observable, statistically

independent and non-Gaussian, with an unknown, but linear, mixing process. Consider an




observed M —dimensional random vector is denoted by x = (x,,---X,, )" which is generated by

the ICA model:
X = ASs (1)

T

where s=[s,s,..sy] is an N -dimensional vector whose elements are assumed independent

sources and A,, , IS an unknown mixing matrix. Typically M >= N, so that A is usually of full

rank. The goal of ICA is to estimate an unmixing matrix W, _,, such that y (defined in equation
(2)) is a good approximation to the ‘true’ sources: s.

y=Wx (2)

ICA is hence an approach to solve the blind source separation problem, which traditionally

addresses the solution of the cocktail party problem in which several people are speaking

simultaneously in the same room. The problem is to separate the voices of the different speakers,

using recordings of several microphones in the room [2]. The basic ICA model for blind source

separation is shown in Figure 1.2.

Figure 1.2: Basic ICA model for blind source separation

Popular approaches for performing ICA include maximization of information transfer—
which is equivalent to maximum likelihood estimation, maximization of nongaussianity, mutual
information minimization, and tensorial methods. The most commonly used ICA algorithms are
Infomax [3], FastiCA [4] and joint approximate diagonalization of eigenmatrices (JADE) [5].
The original Infomax algorithm for blind separation by [3] is better suited to estimation of
super-Gaussian sources. To overcome this limitation, techniques have been developed for
simultaneously separating sub- and super-Gaussian sources [6]. A flexible independent

component analysis approach using generalized Gaussian density model method was introduced




in [7]. These algorithms typically work well for symmetric distributions and are less accurate for
skewed distributions. Recent extensions of ICA to overcome this limitation include non-
parametric ICA [8] and kernel independent component analysis [9]. Other ICA models that
adaptively vary the nonlinear functions (or activation functions) to better fit the underlying
sources have also been proposed [10,11]. The variety of recent approaches for performing ICA
and its applications in areas as diverse as biomedicine, astrophysics, and communications
demonstrates the vitality of research in this area.
2. Functional MRI

As discussed in the first article of the issue, FMRI is a technique that provides the
opportunity to study brain function non-invasively and is a powerful tool utilized in both
research and clinical arenas since the early 90s [12]. The most popular technique utilizes blood
oxygenation level dependent (BOLD) contrast, which is based on the differing magnetic
properties of oxygenated (diamagnetic) and deoxygenated (paramagnetic) blood. When brain

neurons are activated, there is a resultant localized change in blood flow and oxygenation which

causes a change in the MR decay parameter T, . These blood flow and oxygenation (vascular or

hemodynamic) changes are temporally delayed relative to the neural firing, a confounding factor
known as hemodynamic lag. Scientific interest rests primarily with the electrical activity in the
neurons, which cannot be directly observed by any variant of the MRI procedure. Since the
hemodynamic lag varies in a complex way from tissue to tissue, and because the exact transfer
mechanism between the electrical and hemodynamic processes is not known, it is not possible to
completely recover the electrical process from the vascular process. Nevertheless, the vascular
process remains an informative surrogate for electrical activity. However, relatively low image

contrast-to-noise ratio (CNR) of the BOLD effect, head movement, and undesired physiological



sources of variability (cardiac, pulmonary) make detection of the activation-related signal

changes difficult.

2.1 Data Acquisition

The MRI signal is acquired as a quadrature signal. That is, two orthogonal “detectors” are
used to capture the MRI signal [13]. The two outputs from such a system are often put in a
complex form, with one output being treated as the real part and the other as the imaginary part.
The time-domain data acquired by the spectrometer are, remarkably, equivalent to the spatial-
frequency representation of the image data, and so a discrete Fourier transform yields the
complex image-space data. It is then common to take the magnitude of this data prior to
performing any fMRI analyses. FMRI studies rely upon the detection of small intensity changes
over time, often with a contrast-to-noise ratio of less than 1.0. Virtually all fMRI studies analyze
the magnitude images from the MRI scanner. A standard approach is to correlate the time-series
data with an assumed reference signal [14]. Many generalizations have been proposed, usually
involving linear modeling approaches utilizing an estimate of the hemodynamic response [15].

The information contained in the phase images is ignored in such analyses.

2.2 Types of Signal and Noise

There are several types of signals that can be encoded within the hemodynamic signals
measured by fMRI. Some of these were identified by McKeown in the first application of ICA to
fMRI [16]. In this paper, infomax [3] was utilized and separated signals were classified as task-
related, transiently task-related, and motion related.

In general, fMRI data may be grouped into signals of interest and signals not of interest.

The signals of interest include task-related, function-related, and transiently task-related signals.



The task-related signal has already been mentioned and is the easiest to model. A reference
waveform, based upon the paradigm, is correlated with the data. The responses of the brain to a
given task may not be regular however, for example the signal may die out before the stimulation
is turned off or change over time as repeated stimuli are applied, leading to a transiently task-
related signal. It is also conceivable that there are several different types of transiently task-
related signals coming from different regions of the brain. The function-related signal manifests
as similarities between voxels within a particular functional domain (e.g., the motor cortex on
one side of the brain will correlate most highly with voxels in the motor cortex on the opposite
side of the brain) [17]. An exciting application of this is for identifying synchronous auditory
cortex activity [18,19] (see areas corresponding to the top time course in Figure 3.5). Most of
these fMRI signals have been examined with ICA and other methods and have been found to be
super-Gaussian in nature (except perhaps the artifacts mentioned in the next section).

The signals not of interest include physiology-related, motion-related, and scanner-related
signals. Physiology-related signals such as breathing and heart rate tend to come from the brain
ventricles (fluid filled regions of the brain) and areas with large blood vessels present,
respectively. Motion-related signals can also be present and tend to be changes across large
regions of the image (particularly at the edges of images). An example of a motion-related signal
occurs during an experiment in which the subjects are mouthing letters, called the rapid
automatized naming task [20]. Figure 2.1 depicts an example occurring during the mouthing that
was extracted from orbitofrontal and inferior temporal brain regions using infomax algorithm
[3]. For comparison, a typical hemodynamic response function is depicted as well. It is clear that
the motion is occurring on a time scale too rapid to be related to hemodynamics. Finally, there

are scanner-related signals that can be varying in time (such as scanner drift and system noise)



or varying in space (such as susceptibility and radio-frequency artifacts) [21]. A number of such

examples can be found online including slice dropout, motion artifact, and nyquist ghosting.

Figure 2.1: Motion-related signal due to mouth movement from inferior temporal and orbitofrontal regions

There are several types of noise one can characterize in an fMRI experiment. First, there is
noise due to the magnetic resonance acquisition which can be discussed as 1) object variability
due to quantum thermodynamics and 2) thermal noise. It can be shown that the thermal noise
will result in white noise with a constant variance in the image dimension [22]. Additionally
there is noise due to patient movement, brain movement, and physiologic noise (such as heart
rate, breathing). It has been suggested that physiologic noise is the dominant factor in fMRI
studies [23]. In the ICA model these “noises” are often not explicitly modeled, but rather

manifested as separate components, (see, e.g., [21,24]).

2.3 Statistical Properties of fMRI Data

Properties such as non-Gaussianity and spatial/temporal independence of sources need to
be addressed for the application of ICA to fMRI data. If the “activations” do not have a
systematic overlap in time and/or space then the distributions can be considered independent
[25]. The temporal distribution of a task-related waveform is often nearly bimodal (off/on) and
thus the algorithm needs to incorporate this fact. Some other basic assumptions of ICA have
been considered in [16]. The assumption that components are spatially independent and add
linearly was evaluated and it was concluded that the fMRI signals and noise are non-Gaussian
and the accuracy of the ICA model may vary in specific regions of the brain. For example,
cortex-based ICA assumes that cortical data are different from non-cortical data and processes a

subset of the data determined by a priori information (see Section 3.6) [26]. The signals of




interest in fMRI are typically focal and thus have a super-Gaussian spatial distribution. However,
the artifactual signals will be more varied and potentially sub-Gaussian.

Certain aspects of the fMRI signal are well known and could be incorporated into an ICA
analysis. First, local spatial correlation exists in MR images due only to the acquisition process.
It is often the case that partial k-space acquisitions involve sampling fewer frequency samples
than the desired number of spatial samples. One can use the fact that the matrix of frequency
data is Hermitian-symmetric to reconstruct the image using a partially acquired frequency matrix
(with the trade-off being a decrease in signal-to-noise-ratio). Another well-known method
involves sampling the lower frequencies and padding the high frequencies with zero (with the
trade-off being a decrease in spatial resolution). This broadens the well described MRI spatial
point spread function in one direction, although it has been suggested that there is a real gain in
resolution when zero padding is up to as much as twice the original number of samples [27].
This results in spatial correlation of the MR signal.

In addition, spatial correlation is induced by the process being measured. The
hemodynamic sources to be estimated have a spatial hemodynamic (vascular) point spread
function. This is partially due to the hemodynamics, but is also a function of the pulse sequence
and the parameters used. Differing degrees of sensitivity to blood flow and blood oxygenation as
well as differences between low and high field magnets will measure different hemodynamics.
The pulse sequence, parameters, and magnetic field strength are considered as constant to enable
discussion of the hemodynamic point spread function without introducing the complexities of
these parameters. There may also be some degree of temporal correlation. Temporal correlation
is introduced by: 1) rapid sampling (a scanner parameter) on the time scale of the magnetic

equilibrium constant, T, and 2) the temporal hemodynamic (vascular) point spread function (a



physiologic variable). There are also other sources of temporal autocorrelations in the data which
are yet to be understood fully [28]. These data properties, which often vary from subject to
subject, can impose difficulties for modeling the temporal aspects of the fMRI signal.

FMRI provides a non-invasive surrogate measure of the brain’s electrical activity. It is a
diverse technique and research using fMRI is growing at a rapid pace. The richness of fMRI data
is only beginning to be understood. We have provided a brief introduction to the fMRI technique
and summarized some of the functionally-related brain signals. It is important to understand the
properties of these signals when developing methods for analyzing this data.

3. ICA of fMRI

Independent component analysis has shown to be useful for fMRI analysis for several
reasons. Spatial ICA finds systematically non-overlapping, temporally coherent brain regions
without constraining the temporal domain. The temporal dynamics of many fMRI experiments
are difficult to study with functional magnetic resonance imaging (fMRI) due to the lack of a
well-understood brain-activation model. ICA can reveal inter-subject and inter-event differences
in the temporal dynamics. A strength of ICA is its ability to reveal dynamics for which a
temporal model is not available [29]. Spatial ICA also works well for fMRI as it is often the case
that one is interested in spatially distributed brain networks.

ICA has found a fruitful application in the analysis of fMRI data [30,31]. A principal
advantage of this approach is its applicability to cognitive paradigms for which detailed a priori
models of brain activity are not available. ICA has been successfully utilized in a number of
exciting fMRI applications and in those that have proven challenging with the standard
regression-type approaches. These include identification of various signal-types (e.g. task and

transiently task-related, and physiology-related signals) in the spatial or temporal domain [32],



the analysis of multi-subject fMRI data, the incorporation of a priori information [33,34], more

recently for clinical applications [35,36] and for the analysis of complex-valued fMRI data.
3.1 Spatial vs. Temporal

Independent component analysis is used in fMRI modeling to understand the spatio-
temporal structure of the signal, and it can be used to discover either spatially or temporally
independent components. Most applications of ICA to fMRI assume use the former approach
and seek components that are maximally independent in space. In such a setting (shown in
Figure 3.1), we let the observation data matrix be X, an N xM matrix (where N is the number
of time points and M is the number of voxels). The aim of fMRI component analysis is then to
factor the data matrix into a product of a set of time courses and a set of spatial patterns. In
principal component analysis this is achieved by singular value decomposition of the data matrix
by which the data matrix is written as the outer product of a set of orthogonal, i.e., uncorrelated
time courses and set of orthogonal spatial patterns. Independent component analysis takes a more
general position and aims at decomposing the data matrix a product of spatial patterns and
corresponding time courses where either patterns or time courses are a priori independent. ICA
can also be compared with the widely used univariate general linear modeling approach which
proceeds by deriving a temporal model/basis set and fitting this model to the data at each voxel
by minimizing the least squared error [37]. The ICA approach does not attempt to explicitly
parameterize the fMRI time course, which is estimated implicitly in the source separation
algorithm (see Figure 3.1).

Since the introduction of ICA for fMRI analysis by McKeown et al. [24], the choice of
spatial or temporal independency has been controversial. However, the two options are merely

two different modeling assumptions. McKeown et al. argued that the sparse distributed nature of



the spatial pattern for typical cognitive activation paradigms would work well with spatial ICA
(SICA). Furthermore, since the proto-typical confounds are also sparse and localized, e.g.,
vascular pulsation (signal localized to larger veins that are moving as a result of cardiac
pulsation) or breathing induced motion (signal localized to strong tissue contrast near
discontinuities: "tissue edges"), the Bell-Sejnowski approach with a sparse prior is very well
suited for spatial analysis [38] and has also been used for temporal ICA [25] as have
decorrelation-based algorithms [38]. Stone et al., proposed a method which attempts to
maximize both spatial and temporal independence [39]. An interesting combination of spatial
and temporal ICA was pursued by Seifritz et al. [18]; they used an initial SICA to reduce the
spatial dimensionality of the data by locating a region of interest in which they then subsequently
performed temporal ICA to study in more detail the structure of the non-trivial temporal

response in the human auditory cortex.

Figure 3.1: Comparison of GLM and ICA (left) and ICA illustration (right).

3.2 A Synthesis/Analysis Model Framework

The model shown in Figure 3.2, was introduced in [40] and provides a framework for
understanding ICA as applied to fMRI data and for introducing the various processing stages in
ICA of fMRI data. The model assumes SICA but can be easily modified for temporal processing.
A generative model is assumed for the data including the brain (in a magnet) and the fMRI
scanner. Such a model provides a way to monitor the properties of the signals as they propagate
through the system and to design the post-processing block, i.e., the analysis stages in a way that
matches well with the properties of the source generation mechanisms. The model is also useful

for validating ICA results through simulations and hybrid-fMRI data.




The data generation block consists of a set of statistically independent (magnetic)

hemodynamic source locations in the brain (indicated by s, (v) at location v for the i" source).

These sources are a function of magnetic tissue properties such asT,, T,, T, , changes in blood

flow, changes in blood oxygenation, etc., that are detectable when the brain is placed in a
magnetic field. The sources have weights that specify the contribution of each source to each
voxel; these weights are multiplied by each source’s hemodynamic time course. Finally, it is
assumed that each of the N sources are added together so that a given voxel contains a mixture
of the sources, each of which fluctuates according to its weighted hemodynamic time course.
The first portion of the data generation block takes place within the brain in which the sources
are mixed by the matrix A . The second portion of the data generation block involves the fMRI
scanner. These sources are sampled (B ) and represent a function of scan specific MR parameters
such as the repeat time (TR), echo time (TE), flip angle, slice thickness, pulse sequence, field-of-
view, etc.

The data processing block consists of a transformation, T(-), representing a number of

possible preprocessing stages, including slice phase correction, motion correction, spatial
normalization and smoothing. It is common to perform a data reduction stage (C) using PCA or
some other approach. The selection of the number of sources is often done manually, but several

groups have used information theoretic methods to do order selection [19,41]. The resultant

estimated source, §(J) along with the unmixing matrix A', can then be thresholded and

presented as fMRI activation images and fMRI time courses, respectively.

Figure 3.2: Model for applying ICA to fMRI data




3.3 Choice of Algorithms and Preprocessing

As mentioned in the previous subsection, ICA of fMRI involves many preprocessing
stages, and there are a number of choices both for those and the ICA algorithms that can be
employed. Studies of how different algorithms and preprocessing stages impact the results have
been performed by several groups [40,42]. The selection of which algorithm to use will also
depend upon the assumed distribution of the sources. For example, fMRI data are commonly
assumed to be super-Gaussian; that is the source distributions have a heavier tail that does a
Gaussian distribution. This quality can be measured using the fourth statistical moment, called
kurtosis (peakedness), which is zero for a Gaussian, negative for a sub-Gaussian, and positive for
a super-Gaussian distribution.

In [43], the model described in Section 3.2 was utilized to evaluate different preprocessing
stages and ICA algorithms using the Kullback-Leibler (KL) divergence, a measure of the
similarity between two distributions [44], as a way to determine how accurate the estimated
source is compared to the “true” distribution. In the case of real fMRI data, validation is difficult
as the true source distributions are unknown. However, one can move in this direction by
superimposing simulated source(s) upon real fMRI data to create a “hybrid” fMRI experiment
(see Figure 3.3). Sources are estimated, extracted (by ranking components by their correlation
with the known sources) and compared with the actual sources. While this approach is limited, it
is useful in providing a quantitative ICA performance measure. Figure 3.3 shows a thresholded
“true” source (a) and its mixing function (b). Also shown is a plot of the “hybrid” fMRI data for
a voxel close the “true” source maximum (c). The contrast-to-noise level is calculated as the
ratio of the source amplitude to the standard deviation (over time) of a voxel within the brain. In

general, it is noted that certain choices and combinations make a difference in results. In this



work, infomax outperformed (in approximation and variability) FastICA, and PCA outperformed

clustering. The best overall combination for this case appears to be Infomax and PCA.

Figure 3.3: (a,b,c) Hybrid-fMRI experiment in which a known source is added to a real fMRI experiment (from [29]). (d)

Comparison of algorithms and preprocessing using hybrid data.

In [45], the performance of various ICA and blind source separation algorithms is studied
for application to fMRI analysis. The algorithms tested were the extended Infomax [6], FastiICA
[4], joint approximate diagonalization of eigenmatrices (JADE) [5], simultaneous blind
extraction using cumulants (SIMBEC) [46], and AMUSE [47] in the user-friendly environment
of a Matlab-based toolbox, group ICA of fMRI toolbox (GIFT) [48] incorporating the
implementations from ICALAB toolbox [49]. The comparison study used both simulated fMRI-
like data generated using the synthesis model shown in Figure 3.2 and actual fMRI data from

seven individuals performing a four-cycle visual stimulation task.

Figure 3.4: FMRI single slice results (left visual cortex)

The experiment on simulated data included two data sets: a set of five sources and another
of eight sources consisting of highly super-Gaussian, Gaussian, and sub-Gaussian sources with
time courses representing sources typical to fMRI data as discussed in Section 2.2. The
separation performance is measured in terms of correlation of the estimated sources with the
original sources both spatially and temporally. All five algorithms were able to achieve some
separation of the sources, with significant performance differences especially for the set with
larger number of sources. Infomax consistently yielded reliable results, followed closely by
JADE and FastICA. In the comparison with fMRI data, group ICA was performed on subjects

performing an alternating left-right visuomotor task [19]. In Figure 3.4, we display that




component from the results of each algorithm which contains the left visual cortex activation
from group results from three subjects. For this case, Infomax, FastICA, and JADE again
successfully identify the task-related components in the left and right visual hemifields. It is also
worthwhile noting that the Z-scores for Infomax are higher than the other algorithms for the task-
related source, indicating that Infomax achieves a higher contrast to noise ratio. SIMBEC
identifies the two task-related sources in the right and left hemifields; however it splits the left
hemifield task-related source into two components, one of as shown in Figure 3.4 (d). AMUSE
also finds the two task-related sources but places both in the same component (Figure 3.4 (e)),
which might be due to the similarity of the left and right activations for the task-related source
have similar spectra.

The comparisons indicate that Infomax performs most reliably, followed closely by JADE.
FastiCA whereas the performance of SIMBEC and AMUSE did not prove to be robust as
different combination of sources and their numbers seemed to affect their performance
significantly. SIMBEC, however, may prove to be useful to identify the sub-Gaussian sources,
i.e., artifacts in fMRI data as its performance for these sources has been consistently very good.
The performance of AMUSE is highly dependent on the differentiability of the spectra of the
sources for a given delay and its performance suffers a great deal when the condition is not met.

Another approach for comparing algorithms is proposed by Esposito et al. in [42]. Linear
correlation and receiver operating characteristics are used to compare temporal and spatial
outcomes, respectively. The infomax approach appeared to be better suited to investigate

activation phenomena that are not predictable or adequately modeled by inferential techniques.



3.4 Group ICA

ICA has been successfully utilized to analyze single-subject fMRI data sets, and recently
extended for multi-subject analysis [19,50-52]. Unlike univariate methods (e.g., regression
analysis, Kolmogorov-Smirnov statistics), ICA does not naturally generalize to a method
suitable for drawing inferences about groups of subjects. For example, when using the general
linear model, the investigator specifies the regressors of interest, and so drawing inferences
about group data comes naturally, since all individuals in the group share the same regressors. In
ICA, by contrast, different individuals in the group will have different time courses, and they
will be sorted differently, so it is not immediately clear how to draw inferences about group data
using ICA.

An approach was developed for performing an ICA analysis on a group of subjects [19]
which extends the synthesis/analysis model mentioned in Section 3.2. In order to reduce
computational load, data reduction was first performed for each subject’s data then a second,
aggregate model order reduction was performed. Back-reconstruction and statistical comparison
of individual maps and time courses is performed following the ICA estimation. This approach is
implemented in a Matlab toolbox [48].

Group maps for an ICA analysis of a four cycle alternating left/right visual stimulation task
collected from a 1.5T Phillips scanner are presented in Figure 3.5. The number of components is
estimated to be twenty-one by the two information-theoretic criteria employed: the minimum
description length and Akaike’s information criterion. Thus, the aggregate data are reduced to
this dimension and twenty-one components were estimated. Both maps are thresholded at

p <0.001 (t=4.5, df =8). Several interesting components were identified within the data.

Separate components for primary visual areas on the left and the right visual cortex (depicted in



red and blue, respectively) were consistently task-related with respect to the appropriate
stimulus. A large region (depicted in green) including occipital areas and extending into parietal
areas appeared to be sensitive to changes in the visual stimuli. Additionally some visual
association areas (depicted in white) had time courses which were not task related. A comparison

of group ICA approaches is found in [53].

Figure 3.5: fMRI Group ICA results (from [19])

Higher order tensor decompositions (also known as multidimensional, multi-way, or n-
way), probably the first class of algorithms that performed ICA successfully [54], have received
renewed interest recently, although their adaptation to group and multi-group fMRI data is still
being explored. Recently, a tensorial approach was developed to estimate a single spatial,
temporal, and subject-specific ‘mode’ for each component to attempt to capture the

multidimensional structure of the data in the estimation stage [55].

3.5 Multiple Groups

In many fMRI experiments, it is desirable to directly compare and contrast two different
conditions either within or between subject groups. Methods for performing such comparisons
have been developed within the framework of the general linear model; however such
comparisons are not intuitive for ICA. Comparisons of two ICA groups can be problematic
because the ICA results represent a comparison of two different linear models with different time
courses. A method for performing subtractive and conjunctive comparisons of group ICA data is
proposed in [56]. An alternative method is given in [57]. One solution involves extracting
components of interest using an a priori spatial or temporal template and quantifying whether

the components extracted from the two groups have sufficiently unique time courses from the




remaining components. An analysis of seven participants performing three paradigms (each was
a four cycle alternating left/right paradigm in which either visual, motor, or both visual and

motor stimuli were used) can then be compared between paradigms as seen in Figure 3.6.

Figure 3.6: Visual, motor, and visuomotor data comparisons (from [58])

Additional parameterizations are also possible. For example in this study onset latencies
were estimated using a weighted least squares technique [59]. A small, but significant latency
difference was observed between the onset of visual and motor activation. Such an approach
allows comparisons of both brain activation and time course parameters across paradigms for the

flexible modeling approach, ICA.
3.6 Applications to Clinical Research

ICA has more recently been applied to address some clinically relevant questions [60]. For
example, ICA has been used to study differences in brain activation due to pain in healthy
individuals vs. those with chronic pain [61] and even to distinguish between Alzhiemer’s
patients and healthy controls by examination of the brain’s ‘default mode’ estimated using ICA
[35,62]. In this section, we give a couple examples from our own work. We first discuss using
ICA to classify schizophrenia patients from healthy controls. Next, we discuss briefly the use of
the simulated driving paradigm to study the impact of alcohol intoxication at two doses upon

fMRI data.
3.6.1 Classification of Schizophrenia

Among the most prominent features of schizophrenia brains are abnormalities in temporal
lobe structure and function; in particular in the superior temporal gyrus (STG). In this study, we

attempted to examine temporal lobe function utilizing an intrinsic, task-uncorrelated measure.




Using functional magnetic resonance imaging data collected from a 1.5T GE Scanner, we
calculated synchronous hemodynamic independent maps (SHIMs) of temporal lobe in 17
patients and 17 matched controls while they performed an auditory oddball task (for more details
see [36]). These maps are computed using ICA, which resulted in one of the components
showing large values in superior temporal lobe. Patient SHIMs revealed greater synchrony in
anterior and lateral STG regions; control SHIMs had greater synchrony in posterior and medial
regions. Right auditory cortex difference maps indicate regions where controls > patients
(orange) and where patients > controls (blue) [see Figure 3.7, right]. Also shown are boundaries
(in green and yellow) depicting intra-individual comparison regions determined by thresholding

difference maps that maximized discrimination between the 2 groups.

Figure 3.7: (left) Mean activation maps from patients with schizophrenia and healthy controls.

A within-participant subtractive comparison of these two sets of right hemisphere temporal
lobe regions (optimized for cohort 1 using a minimum probability of error criterion)
differentiated schizophrenia from healthy controls with 97% accuracy initially (further validated
by a re-test of the healthy controls) and performed with 94% accuracy in a confirmatory study of
new subjects scanned at a different site. These results shed new light on STG functional
differences in schizophrenia, suggest that aberrant patterns of coherence in temporal lobe cortical
regions are a cardinal abnormality in schizophrenia, and have the potential to provide a powerful,

quantitative clinical tool for the assessment of schizophrenia.
3.6.2 Alcohol Intoxication Studies

More recently, we, and others, have used ICA to decompose fMRI data sets acquired

during naturalistic viewing paradigms [29,63]. Such conditions naturally lend themselves to an




ICA analysis since the temporal dynamics are largely unknown in such cases. It is then possible
to study deviations of such decompositions due to medication or drugs. We investigated
impaired driving using a simulated driving skill game that presents an “in-car” view of a road
and a speed readout by alternating between fixation, driving, and watching [29,64]. We explored
behavioral alterations and fMRI activation at two blood alcohol concentrations (BACs, 0.04 and
0.08 and placebo). Scanning occurred on a 1.5T Philips MRI scanner. Imaging results
demonstrated seven separate networks of brain networks with different time courses (see Figure
3.8). For this analysis, the ICA spatial maps were estimated from the placebo condition, “fixed”,
and time courses were then estimated from all the data.

A global disruptive effect of alcohol was observed. In addition, dose-dependent fMRI
changes were revealed in orbitofrontal and motor (but not cerebellar) regions; visual and medial
frontal regions were unaffected. Cerebellar regions were significantly associated with driving
behavior in a dose-dependent manner. ICA was thus used to determine that alcohol demonstrated
unique, disruptive, dose-dependent effects on fMRI signal within several brain circuits. This
work has enabled us to build a model for how brain activity is stimulated by simulated driving,

and is impacted by various factors such as alcohol and speed.

Figure 3.8: Driving-related networks and their associated time courses compared while sober and at two doses of alcohol.

3.7 Incorporation of Prior Information

The incorporation of prior information into ICA methods is important as it can provide
improved separability and allow selective exploratory analysis. In addition, ICA methods make
assumptions about, e.g. the distributional shape of the sources, and thus it is important to both

assess the impact of such assumptions and modify them based upon given fMRI data.




There have been a number of applications of ICA that have attempted to utilize prior
information for fMRI analysis. For example, using a reference function to extract only a single
component is proposed in [65]. A more general Lagrange-based approach for constraining the
spatial sources is found in [66]. Stone et al. propose a skewed symmetric nonlinearity (i.e.,
assume that the source distributions are skewed). This makes sense if one is interested in
components that consist largely of either activations or deactivations [67]. Formisano et al.
propose performing ICA upon data extracted from the cortex (where the activation is expected to
be occurring) using a tessellation model of the brain cortex derived from a high resolution
structural image [26]. Duann et al. examine time-locked temporal structure and propose a
visualization approach to evaluate trial-by-trial variability [68]. An advanced mean field
approach was invoked for handling situations with adaptive binary source signals [69]. In
temporal mode this method can separate on/off signals while in spatial mode the approach leads
to an algorithm that shares many features with Fuzzy clustering. Bayesian methods provide a
useful way to incorporate prior information into ICA and may prove useful for fMRI analysis

[70].
3.7.1 Spatial Prior Information

The successful applications of ICA to fMRI signals are dependent on the validity of the
statistical assumptions implicit in the method. In fMRI data, the physiological signals of interest
are governed by a small percentage of the whole brain map, whereas the majority of brain
regions are governed by less significant homogeneous background with signal of non-interest in
the task-related activation maps. While conventional ICA approaches, including a fixed
nonlinear function-based algorithm or a high-order cumulant-based algorithm, work well in

highly kurtotic or super-Gaussian and sub-Gaussian sources, they might provide poor results



with fMRI data due to their lack sensitivity to such specifically skewed distributions and low
kurtotic signals. We recently proposed a source density-driven optimal ICA method, aiming to
incorporate physically realistic assumptions and a more flexible nonlinearity to improve
separation results [71]. Our method provides comparable performance to a flexible gaussian
mixture, expectation-maximization based approach with much less computation complexity [72].

The central idea is to use a two-stage separation process: 1) Conventional ICA used for all
channel sources to obtain initial independent source estimates; 2) source estimate-based
“optimal” nonlinearities used for the “refitting” separation to all channel sources. The ICA
algorithm is not based on fixed nonlinear functions, but on flexible nonlinearities of density
matched candidates. The performance of ICA can be improved by seeking “matched”
nonlinearities for each source and incorporating prior information into the ICA algorithm. Figure
3.9 shows the comparison between optimal ICA and Infomax ICA on the fMRI visual

stimulation data of a single subject.

Figure 3.9: Comparison between Source Density-Driven ICA and Infomax ICA

3.7.2 Temporal Prior Information

It is also useful to impose constrains directly upon the mixing matrix in a spatial ICA fMRI
analysis. For example, a component selective constraint of the ICA model mixing matrix such
that one or more specific components are constrained to be “close” to a paradigm-derived time
course is shown in Figure 3.10 [33]. The degree of closeness is specified by the user based upon
amount of confidence placed in the information provided. Such an approach can also be

formulated using a Lagrange framework. Results from our approach are shown below for an




fMRI experiment for an auditory detection task. The participant was responding to the target

with a button press.

Figure 3.10: Comparison of ICA and sbICA in one participant

The left side of the figure demonstrates the task-related component for an unconstrained
ICA analysis. On the right is the constrained (or semi-blind) analysis showing additional regions
including motor cortex towards the top of the figure [33]. The temporal correlation with the
paradigm is much higher for the constrained analysis as expected. These results demonstrate the

utility of incorporating mixing matrix constraints in an fMRI analysis.
3.8 Complex Images

Functional magnetic resonance imaging (fMRI) is a technique that produces complex-
valued data; however the vast majority of fMRI analyses utilize only magnitude images despite
the fact that the phase information has a straightforward physiologic interpretation [73]. A
number of ICA algorithms are extended to the complex domain and can be utilized for
processing the fMRI data in its native complex domain. The performance of the complex
infomax algorithm that uses an analytic (and hence unbounded) nonlinearity with the traditional
complex infomax approaches that employ bounded (and hence non-analytic) nonlinearities as
well as with a cumulant-based approach has been studied [74]. Results from a magnitude-only
and complex-valued analysis are presented in Figure 3.11. The complex-valued approach results
in a larger contiguously activated region in all subjects (from [75]). In addition, the phase

information is captured by the complex-valued approach (c,d).

Figure 3.11: Results from magnitude-only analysis (a) and complex-valued analysis (b,c,d).




4. CONCLUSION
The application of ICA to fMRI data has proved to be quite fruitful. However there is still

much work to be done in order to take full advantage of the information contained in the data.

Additional prior information about multiple expected sources (both interesting and non-

interesting) and their properties (FMRI properties, physiologic recording, etc) can be utilized. In

addition to incorporating appropriate assumptions (and moving towards a semi-blind source

separation) it is important to relax inappropriate assumptions (such as having a fixed temporal

delay for each source). One of the strengths of ICA of fMRI is its ability to characterize the high-

dimensional data in a concise manner. Continuing to do this and developing ways to mine the

unexpected information in fMRI data will provide an exciting future for ICA of fMRI.
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LEGENDS

Figure 1.1: (a) The joint density of two independent signals, (b) PCA projection (U;, U, ), (c) ICA projection (&, &, ) (adopted
from [1])

Figure 1.2: Basic ICA model for blind source separation

Figure 2.1: Motion-related signal due to mouth movement from inferior temporal and orbitofrontal regions

Figure 3.1: Comparison of GLM and ICA (left) and ICA illustration (right). The GLM (top left) is by far the most common
approach to analyzing fMRI data, and to use this approach, one needs a model for the fMRI time course whereas in spatial ICA
(bottom left), there is no explicit temporal model for the fMRI time course, this is estimated along with the hemodynamic source
locations. (right) The ICA model assumes the fMRI data, x, is a linear mixture of statistically independent sources, s and the goal
of ICA is to separate the sources given the mixed data and thus determine the s and A matrices

Figure 3.2: Model for applying ICA to fMRI data

Figure 3.3: (a,b,c) Hybrid-fMRI experiment in which a known source is added to a real fMRI experiment (from [29]). (d)
Comparison of algorithms and preprocessing using hybrid data.

Figure 3.4: FMRI single slice results (left visual cortex)
Figure 3.5: fMRI Group ICA results (from [19])
Figure 3.6: Visual, motor, and visuomotor data comparisons (from [58])

Figure 3.7: (left) Mean activation maps from patients with schizophrenia and healthy controls. Right auditory cortex
demonstrated the greatest difference (white box); (middle) Right auditory cortex difference maps with optimized boundaries;
(right) Individual classification results for cohort 1, and replication in cohort 2. Schizophrenia classification is indicated with the
color red.

Figure 3.8: Driving-related networks and their associated time courses compared while sober and at two doses of alcohol.
Figure 3.9: Comparison between Source Density-Driven ICA and Infomax ICA
Figure 3.10: Comparison of ICA and sbICA in one participant

Figure 3.11: Results from magnitude-only analysis (a) and complex-valued analysis (b,c,d).
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Figure 3.9

(a) Source Density-Driven ICA (b) Infomax ICA
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