IGT System Engineering

Peter Kazanzides October 19, 2006

Copyright © CISST ERC, 2006

NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

My Background

1989-1990 Postdoctoral research at IBM on ROBODOC

1990-2002 Co-Founder of Integrated Surgical Systems

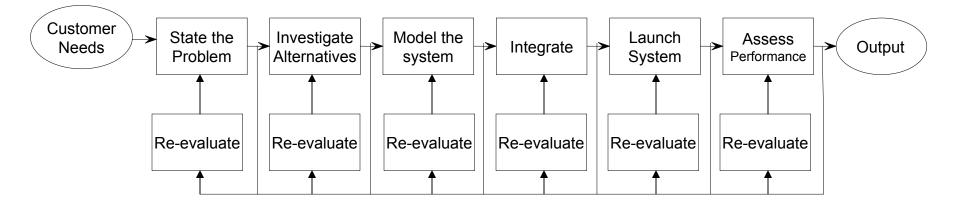
- Commercial development of ROBODOC® System
- Commercial sales in Europe (CE Mark)
- Clinical trials in U.S. and Japan
- FDA approval for ORTHODOC planning system
- ISO 9001 certification

2002-present Research faculty at JHU CISST ERC

9

Outline

- Elements of System Engineering:
 - Requirements
 - Risk Analysis
 - Architecture
 - Modeling / Simulation
 - Verification and Validation
- Case study: Image-guided robot for rodent research
- Current work: Surgical Assistant Workstation
- Summary and Conclusions
- Three challenges and opportunities for assistance


What is System Engineering?

- Spans the entire development process
- Considers the entire system, including hardware and software (interdisciplinary)
- Key activities include:
 - Requirements
 - Risk analysis
 - System architecture
 - Modeling / simulation
 - Verification and Validation

Systems Engineering: The SIMILAR Process

INCOSE: International Council on Systems Engineering

The Systems Engineering Process from A. T. Bahill and B. Gissing, Reevaluating systems engineering concepts using systems thinking, *IEEE Transaction on Systems, Man and Cybernetics, Part C: Applications and Reviews,* **28** (4), 516-527, 1998.

How much System Engineering is enough?

- Depends on development scenario:
 - 1. Prototype for (non-clinical) feasibility study
 - 2. System for clinical use under IRB (and possibly IDE)
 - 3. System for clinical use and eventual commercialization
 - 4. Approved medical device

University/Industry Collaborations

- The typical partnership:
 - University does research, builds prototype system
 - Industry acquires IP, extracts requirements from prototype, re-designs (almost) everything
- Questions:
 - Can system engineering approach improve this?
 - Will regulatory agencies allow this?
 - Can Universities remain agile?

Requirements

- There are always requirements!
- Informal (undocumented) is fine for early prototypes
- Documented requirements necessary for:
 - Any system for clinical use
 - Any development involving multiple/distributed parties (e.g., university researchers, industry, clinicians)
- Requirements may not be necessary for toolkits

Risk Analysis

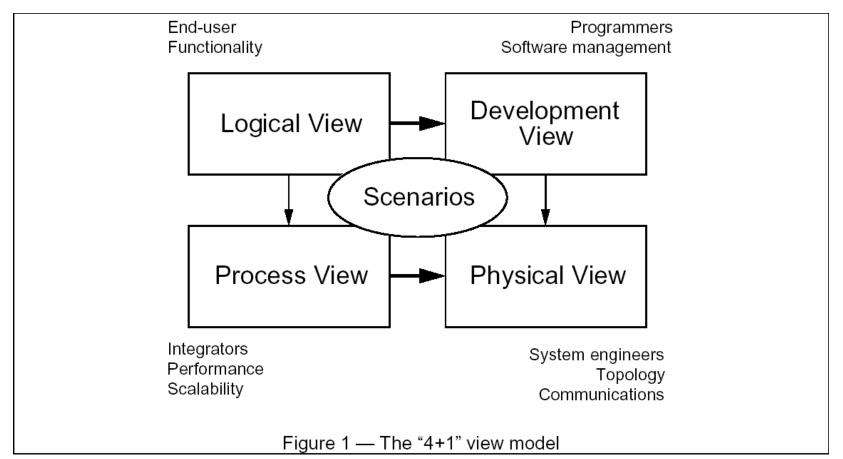
- Risk analysis should be performed by crossfunctional team, including application expert
- Two common methods:
 - Fault Tree Analysis (FTA)
 - Top down analysis: trace each system failure down to components
 - Most useful for after-the-fact analysis
 - Failure Mode Effects (and Criticality) Analysis (FMEA/FMECA)
 - Bottom up analysis: for each component failure, determine (potential) system failure
 - Most useful in design phase (proactive)

Risk Analysis: FMEA / FMECA

- Typically presented in tabular format:
 - Failure Mode
 - Effect on System
 - Cause of Failure
 - Methods of Control
 - (FMECA) Risk Priority Number (RPN), product of:
 - Severity (S) seriousness of effect of failure
 - Occurrence (O) likelihood of failure
 - Detection (D) ability to detect failure

Risk Analysis: FMECA

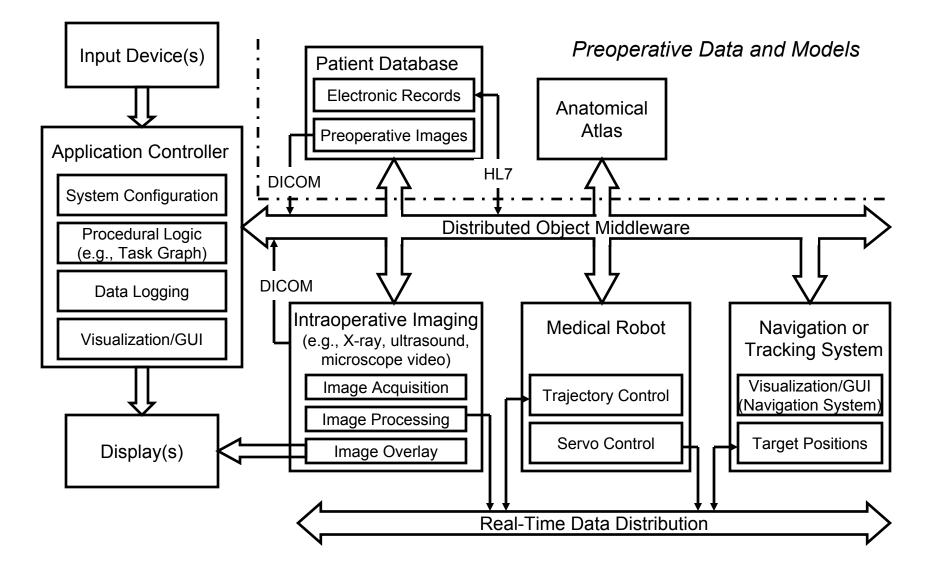
- Risk assessment should be an iterative process:
 - Determine RPN for initial system design
 - Add methods of control where necessary
 - Determine RPN for system design including methods of control
- FMECA table can include both risk assessments or just the final one


Architecture

- Most often refers to software, but can include hardware elements
- Simple definition: "How the pieces work together"
- From Software Engineering Institute (SEI) at CMU:

Software architecture is the set of design decisions which, if made incorrectly, may cause your project to be cancelled – Eoin Wood

Architecture: 4+1 View



From: P. Kruchten, "The 4+1 View Model of Architecture", *IEEE Software*, 12(6), Nov 1995.

Other approaches include RM-ODP, Zachman framework

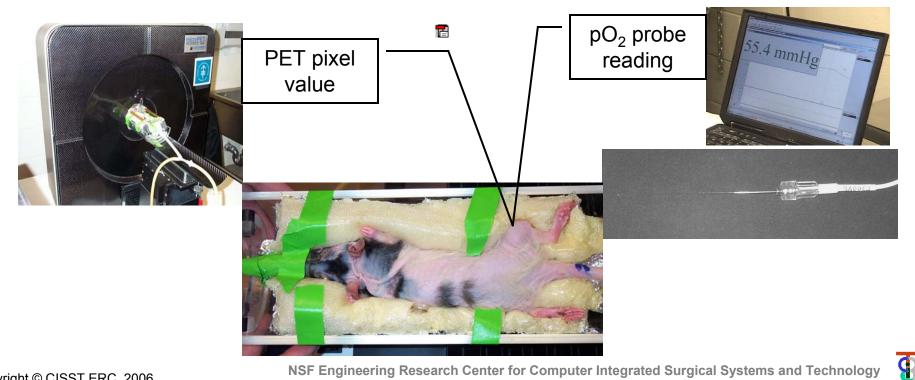
Image-Guided Intervention System Architecture

Modeling and Simulation

- •Create models of the system to guide the development
- •Model Driven Architecture (MDA) \mathbb{R}^*
 - Model is enduring asset
 - Perform simulation/testing with model
 - Generate code from model
 - Is the technology (tool set) there yet?

"Processes, Methodologies, and Tools used for the Development of a Model Driven Architecture Based Open Software Framework for Distributed Medical Devices", Amen Ra Mashariki, Ph.D. proposal, Morgan State University

*Registered trademark of OMG


Verification and Validation (V&V)

- NASA SATC: "differences between verification and validation are unimportant except to the theorist"
- Two primary V&V activities:
 - Reviews (inspections, walkthroughs)
 - Testing (e.g., against requirements)
- Many software toolkits (e.g., VTK, ITK) can be automatically tested, but this is more challenging for IGT systems

Case Study: Image-Guided Robot for Rodent Research

<u>Initial application</u>: correlate pO₂ measurements with PET values to validate non-invasive method for locating hypoxic tumor regions

NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

Image-Guided Robot for Rodent Research: Requirements

- Distributed team:
 - Developers at JHU (Baltimore)
 - Customers (users) at Memorial Sloan Kettering Cancer Center (New York City)
- Requirements were critical:
 - First meeting: Sept 2003
 - Three major revisions
 - Final version approved: March 2004
 - System installed at MSKCC: Jan 2005

Image-Guided Robot for Rodent Research: Risk Analysis

- System not for human clinical use
- No formal risk analysis performed
- Requirements document included safety requirements
 - Emergency stop button

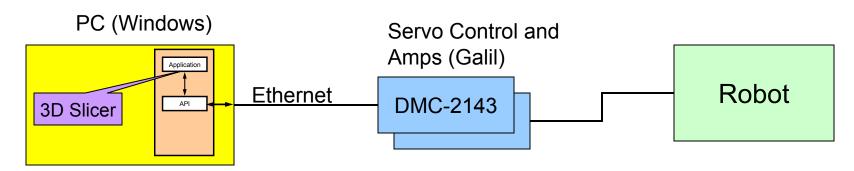
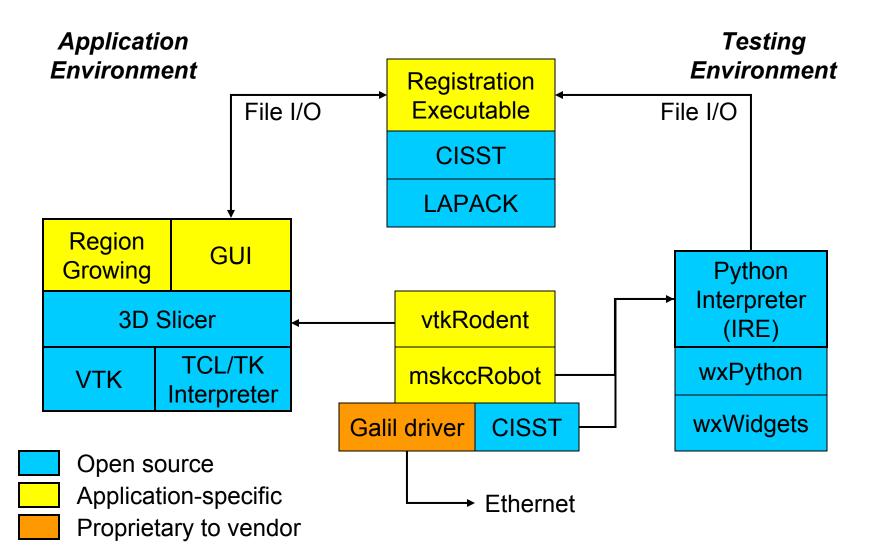


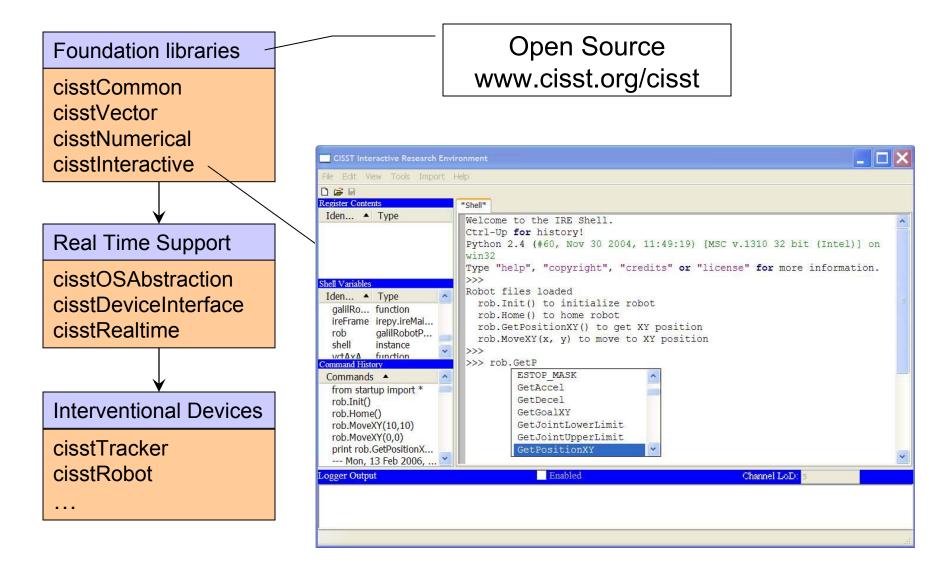
Image-Guided Robot for Rodent Research Architecture Views

- Physical View see following
- Development View see following
- Process View not needed
- Logical View not used
- Scenarios (Use Cases)
 - Discussed during development of requirements specification
 - Should have documented this!

9

Image-Guided Robot for Rodent Research Physical Architecture




Image-Guided Robot for Rodent Research Development Architecture

Copyright © CISST ERC, 2006

CISST Software Package

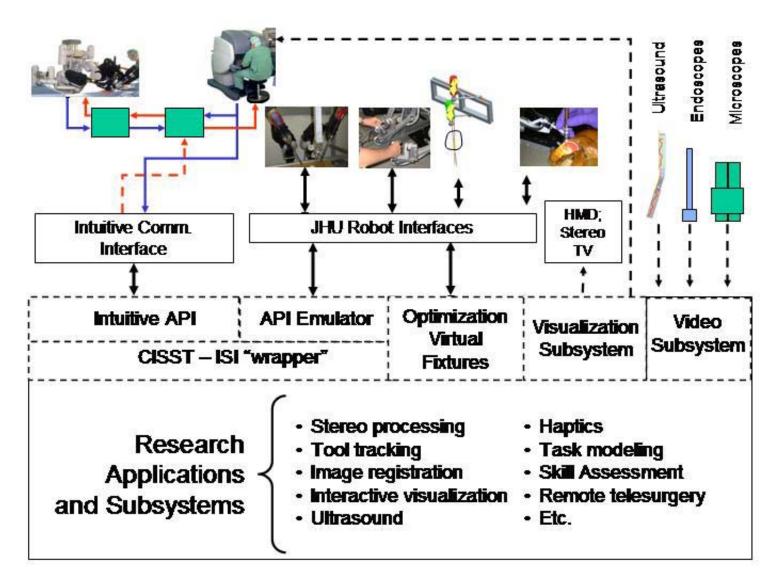
Image-Guided Robot for Rodent Research: Modeling / Simulation

• Not needed

Verification & Validation

- Customer acceptance testing
- System accuracy tests with phantom:
 - PET Fiducial Localization Error: 0.26 mm
 - Robot Fiducial Localization Error: 0.18 mm
 - Target Registration Error: 0.29 mm

"Design and Validation of an Image-Guided Robot for Small Animal Research," *MICCAI*, Copenhagen, Denmark, Oct 2006.


9

Current Work: Surgical Assistant Workstation

- NSF supplement to CISST ERC
 - Started Sept 2006
- Collaborative effort between JHU and Intuitive Surgical
 - Integrate daVinci research API with CISST Software
 - Emulate daVinci API for research robots
- Currently working on system architecture
 - Plan to use 4+1 views

9

Surgical Assistant Workstation

Summary and Conclusions

- System engineering integrates multiple disciplines over the development life cycle
- Key activities include requirements, modeling, architecture, verification & validation

What's needed depends on development scenario

- Image-guided robot for rodent research required good system engineering documentation due to separation of developers and users
- Surgical assistant workstation will require even better system engineering due to distributed development and increased complexity.

Three Challenges

- 1. Matching level of system engineering to development scenario
 - Too much: time & schedule cost
 - Too little: poor outcome or difficulty proceeding to next stage → time & schedule cost
- 2. Insufficient tools for modeling, simulation, and automated testing of IGT systems
- 3. Building an interdisciplinary team and integrating its output

9

How can NCIGT help?

- 1. Provide guidance documents for performing system engineering
- 2. Develop realistic modeling and simulation environments for system evaluation and testing
- Provide forum for researchers in different disciplines to collaborate on common problems

