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Abstract. In this paper, we take full advantage of the information con-
tained in diffusion-weighted images (DWI) to extract a major brain white
matter bundle, the cortico-spinal tract (CST). The gist of the method
is to combine cutting-edge machine learning, registration and tractog-
raphy techniques into an automatic pipeline that takes the DWI as an
only input, independently of the subject’s neurological condition, and
model the cortico-spinal tracts based on robust prior-assumptions. This
tool is however flexible as disease-specific information can be added on if
appropriate. For a given subject’s set of DWIs, the DTI is reconstructed,
registered to an existing adult DT atlas using a piecewise-affine DT-based
registration algorithm. Existing regions of interest (ROIs) defining the
CSTs are propagated from the atlas space to the subject space. They
are then corrected using a learning-based wrapper adapted to our prob-
lem. The fiber bundle is then extracted using an efficient tractography
method, based on stochastic walk of particules with mass.

1 Introduction

Defining the location of given white matter bundles remains a very challenging
task, in particular in the context of neurosurgery operating rooms where effi-
ciency has to be combined with the greatest possible precision. In fact, each
image specific, such as poor SNR or unusual neurological conditions, can ham-
per the proper segmentation of well-known major white matter tracts. Tools are
being developed to address this problem of utmost importance and make such
segmentations more efficient and accurate [6].

White matter tract segmentation can be categorized into two groups. The
first one encompasses methods that consist of a deterministic ([8], [11]) or prob-
abilistic ([15], [4], [9]) tractography of the whole brain, followed by an indepen-
dent filtering of the tracts through regions of interests determined by the user
in meaningful anatomical regions [17]. This approach was chosen to generate
tract-specific analyses in [19], for instance. This type of method heavily depends
on the quality of the whole brain tractography as well as on the anatomical ac-
curacy of the inclusion and exclusion ROIs. A second class tackles this problem
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by targeting a given bundle, which is the case in Kreher et al. [7], where the
authors rely on probabilistic maps obtained from two seed points to delineate
white matter structures. In addition, in [21], a gaussian-based inner product is
computed between fibers, and used for automatic tracts bundling.

Motivated by the work from Nazem-Zadeh et al. [13], in this paper, we
pipeline innovative DTI-based registration, machine learning and tractography
algorithms to segment the corticospinal tract, a voluntary movement motor tract,
of 2 patients with tumor and 2 healthy subjects with 10 repeated scans pro-
vided by the organizers of the DTI challenge workshop. After preprocessing of
the DWIs, Diffusion Tensor Images were reconstructed. The 10 repetitions of
the healthy subjects’s DTIs were averaged using a piece-wise affine registration
algorithm[18]. These averages and the patient’s DTIs were then registered to an
existing adult DTI atlas [5] built from the publicly available IXI database. The
ROIs defined on this atlas were then propagated to each subject. The propa-
gated ROIs for each subject were further refined by applying a learning-based
wrapper method [20] that aims at reducing systematic label errors with respect
to manually delineated ROIs. The last step was to use these corrected ROI to
filter the whole brain tractography obtained with a robust algorithm based on
stochastic walks of massive particles [1]. This algorithm allows to accurately re-
cover estimates of the axon bundle orientations at fiber crossings, using a multi
diffusion tensor field computed from the means of the Diffusion Basis Function
model [14].

2 Method

2.1 Presentation of the analysis pipeline

Normalizing the Diffusion images to an existing atlas For all 22 sets
of images (two patients and two times 10 subjects’s scans), all the gradient
acquisitions were affinely aligned to the b0 image to correct for motion and
a whole brain mask was created using Brain Extraction Tool ([16]). The b0
aligned weighted-images and brain mask served as inputs for the Diffusion Ten-
sor reconstruction achieved with the Diffusion Tensor Image Toolkit (DTI-TK,
dti-tk.sourceforge.net). Irregularities, such as non definite positive tensors
were corrected for and the DTIs were linearly and nonlinearly registered to a DT
adult atlas, using a high-dimensional tensor-based image registration algorithm
[18]. The DT adult atlas was built from 78 images drawn from the 550 healthy
subject scans of the IXI database (40 males/38 females- ages: 39.77±11.63 /
39.47±12.51) [5] and was chosen over an aging population template, after visual
inspection of the scans to analyze. The tumor segmentations provided by the or-
ganizers of the workshop were also propagated from the T1 and T2 weighted struc-
tural images to the DTIs, using a symmetric diffeomorphic mapping contained
in the Advanced Normalization tool (ANTS) [2]. The Fractional anisotropy and
mean diffusivity images derived from the DTIs were registered to the T1 and T2,
respectively. The inverse of the displacement fields were applied to the tumor
segmentation. Visual inspection of the segmentation overlayed on top of principal
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direction and fractional anisotropy images allows us to classify each segmenta-
tion into 3 categories: edema, infiltrated or disrupted areas. The segmentation
corresponding to the disrupted tumored areas were added as exclusion criteria
while filtering the CST from the whole brain tractography.

Definition and Refinement of the ROIs

– Definition of the ROIs: Regions of interest, called inclusion ROIs (i.e., ROIs
through which the CST goes) were manually defined by a specialist on the
FA-weighted principal direction images of the adult atlas and 10 other ran-
domly chosen IXI subjects in their original space (Figure 1). They were se-
lected in agreement with the ICBM-DTI-81 white matter probabilistic atlas
[12]. As the CST is an ascending tract, these inclusion ROIs were delineated
on axial slices at the pons level and at the junction between the tempo-
ral lobes and the somatosensory cortex in each hemisphere. A mid-sagittal
separation plane was also traced that served as an exclusion ROIs. All the
ROIs were then propagated from the atlas space to each subject space (see
Figure 1). Disrupted tumored areas flowed from the subject’s structural to
the subject’s DT space also represented exclusion ROIs in patients.

– Automatic segmentation: The atlas ROIs were propagated from the normal-
ized space to each control, patient and IXI images’ space using the inverse
deformation field obtained from prior registration of the DT images to the
atlas. They were further propagated in the case of the controls to match each
of the 10 repeated scans.

– Learning phase: The refinement or learning phase is crucial to improve the
accuracy of the propagated ROIs, hence the accuracy of the segmentation
accuracy. We did so by adapting the corrective learning technique [20] that
trains classifiers to identify and correct systematic errors between the auto-
matic ROIs and the expert labeled ROIs. To this end, the ROIs drawn in
each of the IXI original space was taken as a ground truth and compared to
the automatic segmentation obtained for each of these subjects. Comparing
to classical learning-based segmentation techniques, the key advantage of
corrective learning is that it allows the learning algorithm to efficiently in-
corporate the anatomical context information of the CST encoded via atlas
propagation, such as the direction of the fiber bundle in different regions of
the brain, to improve the learning performance.

Tractography of the CST To estimate axonal fiber connectivity path-
ways on the CST, we used the algorithm proposed in [1], based on stochastic
walks of massive particles. The method relies on multiple local orientation
information provided by multi tensor diffusion MRI to lead the particles. It
uses particles with mass, which introduces inertia and gravitational forces re-
sulting in filtered trajectories. Following this, the fiber bundles are estimated
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with a clustering procedure based on terminal points (the tractography posi-
tions on the ends of the tracto which are expected to reach white-grey matter
interfaces) that allows to eliminate outlier walks generated by wrong seed
points or wrong trajectories. We also filter the tracts that reach target ROIs.
These ROIs are introduced to the tractography stage so that a correct walk
must start from one region and end on the other. To define those ending
regions we use the inferior and superior inclusion corrected ROIs we defined
in the previous stage.
The vector xt,m defines the position of the m-th particle at the iteration
(step) t. xt+1,m = xt,m + αdt+1,m is the new position of the m-th parti-
cle, where the motion direction is denoted by the unitary vector dt+1,m and
α is a fixed step size. In this approach, the motion direction is given by
dt+1,m = γ1d

1
t+1,m + γ2d

2
t+1,m + γ3d

3
t+1,m. The first term codifies the infor-

mation of the local fiber orientation and is stochastically selected from the
principal direction diffusions of the multi-tensor representation. The second
term introduces an inertial component into the particle’s trajectory, and the
last term introduces gravitational effect of the surrounding particles pro-
moting similar trajectories to the entire particle set. The most important
component of the particle’s dynamic is the first term d1t+1,m, i.e. the local
tissue structure.

2.2 Description of the parameter used in each of the algorithms

DTI and structural normalization Two registration algorithms were
used to a/ normalize all the diffusion tensor images to the IXI atlas and
to b/ normalize the T1 and T2 structural images to the DTIs. In the first
case, the DWIs were all preprocessed in the same way. In fact, they initially
had various origins: the number of diffusion-weighted images were different
for the patients, the controls and the IXI subjects. These datasets were also
acquired on different scanners, with different resolutions and voxel spaces.
In order to minimize the bias resulting from this diversity, we used algo-
rithms that have been thoroughly tested and shown to be extremely robust.
In addition, diffusion tensors images are the only images from which com-
parisons (i.e., registrations) are inferred. DTs model the real diffusion signal
while approximating it, and thus are less subjected to bias. The DWIs were
corrected for motion and eddy-current artifacts ([10]), before extracting the
brain from the b0 image using BET ([16]). The threshold for the extraction
was set to 0.2. Each subject’s DT was then reconstructed using the standard
linear regression approach [3], and resampled to 256x256x256 voxels with
dimensions equal to 1x1x1mm.
These resampled DTIs were first rigidly and affinely aligned to the tem-
plate using the Euclidean Distance squared as a similarity metric, x = 4
mm, y = 4 mm and z = 4 mm, as the distance between the sample
points to evaluate image similarity. The stop criterion was δ = 0.01 (mini-
mum amount of change in the cost function as a fraction of the previous
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value at the previous iteration). These linearly registered DTIs were in-
putted into a diffeomorphic registration algorithm. This one uses the L2

distance between the anisotropic part of the apparent diffusion profiles as-
sociated with the DTs as a similarity metric and, regularizes the transfor-
mation using a dense piecewise affine parametrization, which divides the
template space into uniform regions and parametrizes the transformation
within each region by an affine transformation. The DTs are explicitly reori-
ented at each step using the finite strain method [18]. As recommended here
http://dti-tk.sourceforge.net/pmwiki/pmwiki.php?n=Documentation.Registration,
we used 6 iterations and a stopping criterion equal to 0.002.
A second step consisted of aligning the T1 and T2 to the fractional anisotropy
(FA) and mean diffusivity (MD) images for each patient and apply this
transformation to the tumor segmentations. We used the a symmetric dif-
feomorphic normalization (SyN) [2], with a 3-level multiresolution scheme
and cross-correlation as a similarity metric. In both case, the radius kernel
was 3 voxels, the gradient descent step size 0.1 and the gaussian smoothing
with a σ of 0.25.

Machine Learning correction Note that each inclusion ROI is defined in
a single axial slice. Before propagation, the ROI was dilated over 2 voxels in
the direction orthogonal to its surface, which is possible because the ROIs
would be similar in neighboring slices. This was done to ensure that the ROI
resulting from the propagation would not present any irregularities due to
interpolation during registration.
After transportation from the atlas to the target image, each propagated
inclusion ROI may span over more than one axial slices. Thus, for training
we projected the propagated ROI into the corresponding axial slice where
the ROI was manually delineated. This projected ROI was used as the initial
automatic ROI segmentation, upon which the corrective learning was applied
to make improvement. We applied corrective learning to each inclusion ROI
separately. For testing, as the axial slice containing the manually delineated
inclusion ROI is unknown, we estimated the axial slice for each inclusion ROI
by computing the mass of center of the automatically propagated ROI. The
atlas-propagated ROI was then projected into the estimated axial slice. The
projected ROI was used as the initial ROI segmentation and the correction
was performed within the estimated axial slice. Note that for the mid-sagittal
separation ROI, corrective learning is unnecessary. The location of this ROI
was estimated by computing the mass center of the propagated separation
slice.
For the corrective learning step, we defined the correction ROI by performing
a one-voxel dilation operation within the axial slice to the set of all voxels
labeled as an inclusion ROI in the initial automatic ROI segmentation. We
trained an AdaBoost classifier to identify the inclusion ROI voxels labeled
by a human expert only within the correction ROI. The use of the correction
ROI was motivated by the fact that when the host method works reasonably
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well, most voxels labeled as the inclusion ROI in the initial segmentation are
in the close proximity of the inclusion ROI voxels in the manual segmenta-
tion. Defining correction ROI simplifies the learning problem by excluding
the vast majority of irrelevant background voxels from consideration.
We adapted the features used in [20] for structural MRI to train the Ad-
aBoost classifiers for the DTI data. In summary, the features captured the
FA together with the information on principal directions extracted from the
reconstructed DTI and contextual information captured in the initial inclu-
sion ROI segmentation for each voxel. The contextual features L(i) were
extracted from the automatic ROI segmentation, S, with L∆x,∆y,∆z(i) =
S(xi + ∆x, yi + ∆y, zi + ∆z). (xi, yi, zi) is the coordinate of voxel i and
(∆x,∆y,∆z) is the relative location from it. Similarly, the features extracted
from FA and weighted rgb-images are represented as F∆x,∆y,∆z(i) = FA(xi+
∆x, yi +∆y, zi +∆z) and R∆x,∆y,∆z(i) = Ired(xi +∆x, yi +∆y, zi +∆z),
G∆x,∆y,∆z(i) = Igreen(xi+∆x, yi+∆y, zi+∆z), B∆x,∆y,∆z(i) = Iblue(xi+
∆x, yi+∆y, zi+∆z), respectively, where FA is the FA image and I{·} are the
weighted rgb-images representing the principle directions. In our experiment,
these features were sampled in a 5 × 5 × 5 neighborhood of a given voxel
(i.e., ∆x,∆y,∆z ∈ [−2, 2]). In addition, the normalized spatial coordinates
of each voxel Sx(i) = xi − x, Sy(i) = yi − y, where x, y are the coordinates
of the center of mass of the correction ROI in the axial slice, and the joint
feature obtained by multiplying each spatial feature and each contextual, FA
and R, G, B features, as used in [20], were included as well.
After the training step, we applied the classifiers learnt from the IXI database
to improve the segmentation accuracy of the automatically generated ROIs
on controls and patients. To further refine the corrected ROI, we applied
an anatomical prior that each inclusion ROI voxel should have the following
property Iblue > 80, Iblue > Ired and Iblue > Igreen. The CST is in fact an
ascending tract, which fans out as reaches the gray matter boundary. Thus,
the blue channel corresponding to the principal direction inferior-superior
must be greater than the two other intensities. The value 80 indicates a high
FA value. The resulted ROI segmentation may contain multiple isolated re-
gions. The largest connected component was selected to be the final inclusion
ROI segmentation.

Probabilistic Tractography A small fixed step size α = 0.4 was set, which
promotes a careful analysis of the regions with fiber crossings and bifurca-
tions. γ′

is values were set to 0.7, 1−γ1 and 1, respectively. The gravitational
force between particle was 0.00001, this value promotes the correction of
the particles’ trajectories as well as a thorough exploration of the medium
(where bifurcations occurs).
A particle was stopped when it reached a voxel with FA value lower than
0.2. The global stop criterion was reached when all the particles’ walks were
stopped. We clustered the fibers pathways and discarded the pathway out-
liers as is explained in the following. Each pathway has an initial point, a
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trajectory and an ending point, and the most important feature for cluster-
ing the pathways are their final position. The cluster stage is based on the
single linkage distance between clusters, also called nearest neighbors. Single
linkage uses the smallest distance between objects in two clusters, c1 and c2.
Thus if d(c1, c2) < c, (where d(·, ·) is the Euclidean distance) c1 and c2 are
joined. Once the clusters are computed, clusters with only a few fibers are
eliminated. Finally, we set c = 2 and ϕ = 0.01.

3 Results

The increased accuracy obtained from the learning technique was assessed in
table 1. Manual segmentations of the 4 ROIs needed to isolate the CST were
drawn in patient 1’s FA-weighted image. Dice coefficients were computed to
compare the automatic segmentation to the corrected one. The correction
step noticeably improved the result, except for the tumor region as the prior
information used in the learning phase did not account for the loss of FA.
However, in the case of patient 1, the specificity is achieved by using the
segmentation of the disrupted tumor as an exclusion ROI when the CST is
filtered out of the whole brain tractography. Figure 2 shows the resulting
segmentations for one of the patients and one of the subjects. On the right
panel, the left CST was displaced because of the presence of the tumor.
The segmentation obtained for the healthy subject shows that the pipeline
recovered the fan-like shape of the CST in the absence of tumor, even with a
poor SNR. Figure 3 compare the segmentations obtained with and without
the corrective algorithm. Using the propagating ROIs results in a sensible
segmentation. However, the propagation generates a bias, in that it may
extend the ROIs to areas that are not relevant to the CST, hence the addition
of tract that do not belong to the given tract.

4 Conclusion

This method, solely based on diffusion-weighted images, was designed to
automatically and efficiently segment the cortico-spinal tract, using cutting-
edge algorithms in the field of registration, tractography and machine learn-
ing. However, the results obtained with this approach could be improved in
several ways. As the resolution of the subjects’s scans were poor, we could
have taken advantage of the ten repeated scans, by normalizing all the dif-
fusion weighted images to the same space, and consider the whole set of 250
diffusion weighted images for the reconstruction of the DT and the trac-
tography. Even so, our aim was to challenge our algorithm using low-SNR
sets of DWI, as can be the case in operating rooms. Repeating the CST
segmentation on 10 repetitions can serve to validate the consistency and ro-
bustness of a given technique. Another improvement to our pipeline would
be to add more subjects to our training data. In fact, in this paper, we used
a DTI dataset from heatlhy subjects to correct segmentations for patients
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and controls. Other training images could be included, such as patients with
different type of tumors. A constrain could then be added to the training in
order to correct initial segmentation with this information.

5 Appendix: Proposed evaluation criterion

To quantitatively evaluate the accuracy of the automatically produced CST
tractography, we propose a high level criterion adapted from the criterion
used in segmentation evaluation.
First, a gold standard CST region within each hemisphere is delineated by a
human expert for each testing subject. For the evaluation, each automatically
produced CST tractography within each hemisphere is converted into a bi-
nary envelope segmentation. The envelope CST segmentation can be derived
by applying spatial smoothing on the produced CST tracts. The agreement
between the automatically produced CST segmentation and manually delin-
eated CST region defines an objective measurement showing the accuracy of
the CST tractography.
The advantage of this evaluation approach is that it is based on high level,
global shape information, which can be objectively implemented with mod-
erate human effort. The key limitation of this evaluation approach is that it
does not reflect any low level, detailed evaluation for each individual tract.
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Segmentation Label (Fig. 1) Automatic Corrected
Left Inferior green 0.419 0.687
Right inferior red 0.339 0.785
Left Superior blue 0.811 0.826
Right Superior yellow 0.819 0.880

Table 1. Comparison between automatic and corrected segmentations in pa-
tient 1, displayed for the 4 ROIs used to filter the CST bundle. The manual
segmentation is taken as the reference. The correction noticeably improved the
result, except for the tumor region as the prior information used in the learning
phase did not account for the loss of FA

Fig. 1. Illustration of the manually defined Regions of Interest on one of the
subjects from the IXI database



Fig. 2. Left Panel: Segmentation of the left and right cortico-spinal tract su-
perposed on top of the FA image. Right Panel: Segmentation of the left and
right cortico-spinal tract in patient 1.

Fig. 3. Comparison of the right and left CST obtained with (left) and without
(right) correction. Using the learning algorithm provides a means to refine the
ROIs, hence to achieve more precise definitions of the tracts
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1 Introduction

In this short paper, we present a novel tractography method based on a gen-
eralization of unscented Kalman filter(UKF) which involves the use of intrinsic
geometry of the space of symmetric positive definite matrices denoted henceforth
by Pn. Such a generalization has never been reported in literature to date. We
call this new filter the intrinsic unscented Kalman filter (IUKF). In this filter,
operations that are intrinsic to Pn are employed and thus no explicit constraints
are needed to guarantee the positive definiteness of the estimated diffusion ten-
sors unlike in [1]. This method is applied to the given human brain data to
perform tractography and recover the CST.

2 Methods

Our tractography algorithm consists of three steps, namely, (1) preprocessing,
(2) fiber tracking and (3) fiber reduction. We now describe each step in some
detail.

(1) In the preprocessing step, each volume corresponding to a given magnetic
gradient direction from the DW MRI dataset is denoised using the unbiased
non-local means algorithm for Rician noise [2]. Since our tracking method is
based directly on the MR Signals, no multi-fiber reconstruction over the whole
image lattice is needed as a preprocessing step. However, the DTI reconstruction
method [3] is employed at the seed points as the initialization for the IUKF.

(2) In this fiber tracking stage, the IUKF is combined with a streamline
algorithm, which is initialized from a seed point. Here all the seeds are uniformly
distributed in a rectangular box that covers most of the brain. At iteration step
k for a single fiber, the reconstruction is performed by the IUKF using a bi-
tensor model, and the direction dk is computed as the major eigen vector of one
of the tensors that is closer to the direction from the last step. The streamline
algorithm then updates the position by computing xk+1 = xk + ∆tdk, where
∆t is the step size. The tracking stops if the angle between dk and the fiber
direction is large (exceeds a angle threshold Θm), or it is at the boundary of the
dataset. The parameters values used in our experiments are is summarized in
Table ( 2.1);

! This research was funded by the NIH grant NS066340 to BCV.



(3) To get the final result, we also need to remove the fibers that do not belong
to the corticospinal tract. This is done by a fiber reduction criteria applied to
the tracking results obtained from the fiber tracking step.

2.1 The Intrinsic Unscented Kalman Filter for Diffusion Tensors

In this section, we briefly present a novel intrinsic unscented Kalman filter to
track diffusion tensors. It is well known that diffusion tensors lie in the space
Pn and we refer the reader to [4, 5] for an introduction to the mathematical
properties of Pn. The IUKF has three main components, namely, an observation
model, the state transition model and the filter. The IUKF is similar to the
standard UKF [6] with the key difference being, some of the vector operations,
e.g. the update of the posterior are replaced by the general linear (GL) group
operation on Pn. Here we will limit our explanation to the observation and state
transition model.

The observation model is based on the bi-tensor diffusion model.

S(n)
k = S0(e

−bng
t
nD

(1)
k gt

n + e−bng
t
nD

(2)
k gt

n) +wn (1)

where gn denotes the direction of n-th magnetic gradient, and bn is the corre-

sponding b-value, and S(n)
k is the MR signal encountered at the k-th iteration

along the n-th magnetic gradient field direction. wn is the additive observa-
tion noise. The covariance matrix of the observation noise for all the magnetic
gradients is a diagonal matrix denoted by R.

For the state transition model on Pn, we propose the general linear (GL)
group operation/action and the LogNormal distribution [7]. For the bi-tensor
(sum of two Gaussians) model, the state transition model at step k is given by,

D(1)
k = (FD(1)

k−1F
t)1/2Exp(v(1)

k )(FD(1)
k−1F

t)1/2

D(2)
k = (FD(2)

k−1F
t)1/2Exp(v(2)

k )(FD(2)
k−1F

t)1/2
(2)

where, D(1)
k , D(2)

k are the two tensor states at step k, F is the state transition

GL-based operation, v(1)
k and v(2)

k are the Gaussain distributed state transition

noise for D(1)
k and D(2)

k in the tangent space at the identity I. The covariance
matrices of the state transitions areQ(1) andQ(2) respectively. Exp is the matrix
exponential. The square root of in Eq. 2 is defined as P1/2 := g, such that
ggT = P , and g is symmetric.

In this work, the covariance matrix of the observation noise is set to be a
scaled identity matrix R = rI. And so is the covariance matrix of the state
transition model set to Q1 = q1I, Q2 = q2I. The initialization of the IUKF
is also important. Here at each seed point, a diffusion tensor reconstruction

method [3] is employed to initialize D(1)
0 , and D(2)

0 = |D(1)
0 |2/3(D(1)

0 )−1. The
state transition matrix F is set to the identity. All the parameters settings are
depicted in table 2.1.



Subject ∆t(mm) ΘM q1 q2 r Θc

Patient 0.5 60◦ 0.1 0.1 0.05 20◦

Control 0.25 60◦ 0.1 0.1 0.03 3◦

Table 1. Parameter Table.

2.2 Fiber Reduction

To remove the fibers that do not belong to the corticospinal tract, we need a
post-processing step that reduces the unwanted fibers. Two reduction criteria
are used, based on ROI and angle of the fiber to the MR-slice direction.

Firstly, each fiber should pass through both of the two ROIs, one at the top
of the brain, and the other in the brainstem, as shown in the upper left figure in
Fig 3, which is also the ROI where we put the seed points as the initialization of
our tracking method. In this way, the fiber length criteria is implicitly applied
such that only long fibers starting from brainstem and ending in the cortex are
retained. The ROI in the experiments is manually set using ITK-SNAP [8].

Secondly, there are some fibers that are not sufficiently vertical. Therefore,
we also used an angle threshold criteria to remove them. In this way, each fiber
which has an angle less than a threshold (Θc) to the X-Y plane, is discarded.
The value of Θc in our experiment is depicted in the table 2.1.

In the tracking stage, the left and right corticospinal tracts are tracked jointly.
To split them, the mid sagittal plane is manually selected, and the fibers with
larger portion in the right of the plane are treated as right corticospinal tracts
and vice versa. Any fiber that passes the mid sagittal plane is discarded.

Lastly, retained fibers are all long enough to connect the brainstem to the
cortex, and also are vertical enough to be included in corticospinal tract.

3 Experimental Results

The fiber tracking results from the first patient are depicted in Fig. 3, where
we observe that the shape of the fiber bundle looks satisfactory, since the CST
fibers connect the brainstem to the cortex. Also, from the figure on the top right
we can see that the fiber bundle along the side of the tumor is thinner (squished)
as expected. The fiber bundle is displayed using MedINRIA [9].

4 Conclusion

By using the IUKF, we can track fibers even in noisy datasets such as the scans
from the healthy subject. However, since it is as streamline based method, there
are still limitations, such as, it can not handle the fanning issue very well. That is,
the results obtained starting from a smaller and bigger side of the fanning are not
equivalent. So in this work, we use both the cortex and the brain stem for seeding
the tractography. And this ROI can also be used as the fiber reduction criteria
to reduce the unwanted fibers. In this way, satisfactory results are obtained even
when the ROI is not an accurate segmentation from the dataset.



Fig. 1. Fiber reconstruction results for the first patient. The upper left figure is the ROI
used as the seeds in the initialization of the fiber tracking and also the fiber reduction
(region) criteria. The upper right figure overlays the fibers with two s0 image slices in
the coronal and axial views, to depict the relative position w.r.t the tumor. The lower
figure shows the shape of the fiber bundle.

References

1. James G. Malcolm, Martha Elizabeth Shenton, Y.R.: Two-tensor tractography
using a constrained filter. In: MICCAI. (2009)

2. Wiest-Daessle, N., Prima, S., Coupe, P., Morrissey, S., Barillot, C.: Rician noise
removal by non-local means filtering for low signal-to-noise ratio mri: applications
to dt-mri. In: MICCAI. (2008)

3. Barmpoutis, A., Vemuri, B.C.: A unified framework for estimating diffusion tensors
of any order with symmetric positive-definite constraints. In: ISBI. (2010)

4. Fletcher, P., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion
tensor data. Signal Processing 87 (2007) 250–262

5. Moakher, M.: A differential geometric approach to the geometric mean of symmetric
positive-definite matrices. SIAM J. MATRIX ANAL. APPL. 26 (2005) 735–747

6. Wan, E., Van Der Merwe, R.: The unscented kalman filter for nonlinear estimation.
In: AS-SPCC. (2000)

7. Schwartzman, A.: Random ellipsoids and false discovery rates: Statistics for diffusion
tensor imaging data. PhD thesis, Stanford University (2006)

8. Yushkevich, P.A., Piven, J., Cody Hazlett, H., Gimpel Smith, R., Ho, S., Gee, J.C.,
Gerig, G.: User-guided 3D active contour segmentation of anatomical structures:
Significantly improved efficiency and reliability. Neuroimage 31(3) (2006) 1116–1128

9. Toussaint, N., Souplet, J.C., Fillard, P.: MedINRIA: Medical Image Navigation
and Research Tool by INRIA. In: Proc. of MICCAI’07 Workshop on Interaction in
medical image analysis and visualization. (2007)



Multifiber Deterministic Streamline
Tractography of the Corticospinal Tract Based

on a New Diffusion Model

Olivier Commowick1, Aymeric Stamm1, Romuald Seizeur1,3, Patrick Pérez4,
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Abstract. In this paper, we build upon a new model, describing the

random motion of water molecules in fibrous tissues, to develop a mul-

tifiber deterministic tractography algorithm. We apply this algorithm to

track the corticospinal tract of the human brain, in both controls and

patients with tumors.

1 Introduction

Tractography of the corticospinal tract (CST) using diffusion-weighted MRI
(DW-MRI) is especially challenging, mostly due to the numerous fiber cross-
ings in the corona radiata. When classical diffusion models (e.g. single or mul-
tiple tensors) coupled with simple tractography algorithms (e.g. deterministic
streamline) are used, these crossings often make it impossible to track the most
lateral fibers of the CST [1]. These include especially important motor areas
such as the hand and the whole face, as shown by the homunculus of Penfield &
Rasmussen. The fact that HARDI sequences are prohibitively time-consuming
in case of patients with tumors makes it critically important to develop diffusion
models and/or tractography algorithms able to track these lateral fibers from
clinical (fast) diffusion sequences, having a small number of encoding gradients.
We recently proposed a diffusion model that seems to meet these requirements
even when using a simple deterministic streamline algorithm [2].

We briefly outline this new model in Section 2.1, the tractography algorithm
in Section 2.2, and the pipeline we used to extract the CST in Section 2.3. Finally,
we provide tractography results of the left and right CST on the two controls
and two patients of the challenge dataset in Section 3.

2 Methods

2.1 Diffusion Modeling

In each voxel, water molecules are assumed to be distributed in several compart-
ments. We first describe how we model the diffusion within a single compartment.

spujol
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Then, we introduce our multi-compartment model, coined Diffusion Directions
Imaging (DDI), and finally we outline how to estimate its parameters.

Single-compartment Model The diffusion process induces, after a diffusion
time τ , a random displacement of water molecules from their initial position x0

to a random position x = x0+
√
2τw. Assuming a unique direction of diffusion,

we propose to model the random variable w as w = u+ v, where:

– u follows a von Mises & Fisher distribution parametrized by (i) the radius
R > 0 of the sphere on which it is defined, (ii) the spherical coordinates (θ,φ)
of its mean direction µ and (iii) its concentration parameter κ ≥ 0;

– v follows a centered Gaussian distribution parametrized by a cylindri-
cally constrained [3] covariance matrix D = R2

κ+1 (I + κµµ�), where I is the
identity matrix and {µ,κ, R} are the same parameters that characterize u;

– u and v are statistically independent.

In essence, (i) µ can be interpreted as the direction of the fibers which con-
strain the diffusion, (ii) R can be interpreted as the radial displacement along
the fiber direction µ and (iii) κ can be interpreted as a measure of anisotropy of
the diffusion. The latter can be related to the fractional anisotropy (FA) [4] as

FA = κ
�
(κ+ 1)2 + 2

�−1/2
. We refer the reader to [2] for more details about the

motivations of such a parametrization.
The probability density function (pdf) of the molecular displacement x−x0

is then obtained by the convolution of the von Mises & Fisher pdf and the
Gaussian pdf, and is parametrized by the four parameters {θ,φ,κ, R}.

Multi-compartment Model Due to its low number of parameters, the single-
compartment model is particularly suited to be encompassed within a multi-
compartment model, which can account for more than one fiber direction within
each voxel. We thereby model the pdf of molecular displacements as a mixture
of pdfs having the common parametric form proposed in the previous section.

We assume m compartments associated with m different fiber directions µi

(i = 1, . . . ,m). In each compartment, the diffusion is modeled according to
the previously described pdf with parameters {µi,κi, Ri} and mixture weight
FAi/m. We also include an additional pdf in the mixture, with weight 1 −�m

i=1 FAi/m to account for isotropic diffusion; this pdf follows the general form
with κ = 0, so that the unique remaining parameter to estimate is R0. Fur-
thermore, we set R2

i = (κi + 1)λ, ∀i ∈ �1,m�, where λ > 0 is the transverse
diffusivity assumed identical in each compartment. For more details about the
above described parametrization, we invite the reader to see [2]. Considering m
putative fiber directions with this parametrization yields a m-compartment DDI
model with 3m+ 1 parameters.

Estimation of the DDI Parameters The theoretical diffusion weighted inten-
sities are the modulus of the Fourier transform of the pdf of molecular displace-
ments which can be analytically derived under the assumption of the DDI model



[2]. The 3m+1 unknown parameters of the m-compartment DDI model are then

estimated using a least squares fitting on the raw diffusion weighted intensi-

ties, and this optimization is performed using the derivative-free NEWUOA

optimization algorithm [5]. The different compartments are sorted in decreasing

order according to their κ. The model selection is performed according to the

procedure described in [2].

2.2 Tractography Algorithm

Our goal is to track the fibers linking multiple regions of interest (ROIs). To this

end, we developed a deterministic streamline algorithm, which can be viewed as

an extension of the original FACT method [6], adapted to the DDI model, using

a breadth-first-type search.

Starting from one of the ROIs, we define one starting point at each voxel of

the ROI. Given one point along its path, we build the main fiber iteratively as

follows:

1. If the number of putative fiber directions m = 0, we stop the tracking.

2. If m = 1, we compute FA1 and the angle α1 between the input direction

and µ1. If α1 < αt and FA1 > FAt, then we follow the single putative fiber

direction µ1 with a step size of l millimeters. Else, we stop the tracking.

3. If m = 2, we compute FA1, FA2, the angle α1 (resp. α2) between the input

direction and µ1 (resp. µ2). If:

– αt < α1,α2: we stop the tracking.

– α1 < αt < α2: cf. the case m = 1.

– α2 < αt < α1: if FA2 > FAt, then we follow the direction µ2 with a step

size of l millimeters, else we stop the tracking.

– α1,α2 < αt: if FA2 < FAt, then cf. the case m = 1; else if κ2 > r × κ1

then we sort the two fibers in ascending order according to the angles

αi. We follow the new direction µ1 with a step size of l millimeters and

we record the second putative fiber direction µ2 (branch) for future use,
as it can be indicative of crossing/kissing/merging/diverging fibers.

Once we have tracked this main fiber, we perform the same tracking from all

the possible branching points that we have recorded along its path. Importantly,

for these trackings, the stepping rule and stopping criteria are identical as those

for the main fiber, but we do not record any possible mixed fiber configuration

along these secondary paths, for which we only follow the main direction µ1 at

each step. We then lead the same tracking from the other ROIs. We only keep

the tracts going through all the seeding ROIs for further analysis. In practice, we

choose the parameters l = 1, r = 0.8, αt = 60 degrees (maximal angle between

two successive directions along the fiber) and FAt = 0.5 (minimal FA along the

fiber). During the tracking, when a point is not on the grid of the DW-MR

images, we compute the DDI model using a trilinear interpolation directly on

the model parameters.



2.3 Tractography Pipeline Applied to the Challenge Datasets

We utilize the following processing pipeline to extract the CST for the challenge
datasets. An expert neuroanatomist (Romuald Seizeur) delineated two ROIs on
each side (left and right) of the original T1-weighted images. One is located in
the posterior limb of the internal capsule and the other in the superior part of the
mesencephalon. In addition, since crossing fiber tracts such as the association
or commissural fiber tracts may be considered as bifurcations of the CST by
the tractography algorithm, the same expert also delineated regions through
which the tracts are not allowed. On the patients’ datasets, the same ROIs were
delineated with some modifications to account for the deformations caused by
the tumor (e.g. in patient 1 the internal capsule on the left side is compressed
by the infiltrating tumor).

All datasets were then processed in three steps:

1. Diffusion-weighted MRI denoising: DW-MRI is subject to random noise
yielding measures that are different from their real values, and thus bias-
ing the subsequently estimated diffusion models. We filtered the diffusion-
weighted MR images with the Rician-adapted Non-Local Means filter [7],
which has been shown to efficiently denoise such images while preserving
fine anatomical structures. In particular, this filter has also been shown to
preserve the angular resolution of q-ball ODF models estimated from HARDI
data [8].

2. ROI alignment on B0 images: we registered the ROIs on the B0 images
according to the following steps:

– global affine registration of the T1-weighted images to the B0 images [9];
– cropping of the affine-registered T1-weighted images using the mask of

the B0 images;
– constrained non-rigid registration [10] of the masked T1-weighted images

to the B0 images;
– application of the obtained transformations to the ROIs.

3. Extraction of the left and right CST using the aligned ROIs and the DDI
estimated from the DWI.

3 Results

The MICCAI DTI tractography challenge consists of two groups of data: two
healthy subjects acquired using a multiple b-values scheme and two patients
acquired using a more standard acquisition protocol. For each of the two healthy
subjects, DW-MRI data were acquired repeatedly (ten repetitions) so that the
reproducibility of the tractography method may be evaluated. On the other
hand, the tumors of the two patients were delineated so that we could produce
combined views to help the surgeon, for example when planning a tumor removal
surgery.



3.1 Tractography on Healthy Subjects

For each of the repetitions of each subject, the left and right CST were computed
utilizing the aligned ROIs (see Section 2.3). We display the tractography of one
volume of each of the two subjects in Fig. 1.

(a) (b)

Fig. 1. Illustration of CST on Healthy Subjects. Representative examples of
obtained fiber tracts for healthy subject 1 (a) and 2 (b) (T1 images are in radiological
conventions, i.e. the left hemisphere is on the right side of the image). To see the full
extent of fiber spreading, all 3D fiber tracts are displayed. This explains why they may
not seem to match exactly the background T1 image.

This figure illustrates that we are able to cover the full extent of the CST for
these healthy subjects, from the face area to the hand area to the medial part of
the CST. This demonstrates that our diffusion model enables the tractography
algorithm to follow bifurcations in the white matter fiber tracts. For each subject,
estimating the DDI models from the DWI took approximately 40 minutes (single-
threaded), while the tractography of the left and right CST took less than ten
minutes.

3.2 Tractography on Patients

We also report results for the CST of each patient on the side of the tumor
(all fiber bundles are provided in supplemental material). The images processed
here had a larger resolution than the healthy subjects and the estimation of
the DDI models from the DWI took approximately 3 hours (single-threaded).
However, this step of the tractography pipeline may be computed offline leaving
only the tractography to perform online (about five minutes for each CST) when
performing the tractography for surgery planning.

We focus on the qualitative evaluation of the obtained tracks and their close-
ness to the tumor (it should be noted that the tumor regions were not used in



(a) (b) (c)

(d) (e) (f)

Fig. 2. Illustration of CST on Patients. Combined views of the obtained fiber

tracts for patients 1 (a,b,c) and 2 (d,e,f), illustrating the proximity of the tumor to

crucial motor pathways. Surfaces for the first patient correspond to the necrotic part of

the tumor (red), the active part of the tumor (yellow) and the edema (orange). For the

second patient, each ROI corresponds to a specific tumor. Images (a,d) show overall

3D views and (b,c,e,f) show the tracts and regions of interest going through a specific

2D slice to better illustrate their proximity.

any way to constrain the tractography algorithm), and on providing the neuro-

surgeon with helpful views for neurosurgery planning. To this end, we present

in Fig. 2 views (made using the MedINRIA software [11]) combining the fiber

tracts, the tumor ROIs provided by the organizers, all on top of the patient’s T1

image. More illustrations are available in supplemental material.

We can observe on this figure that, although the tumor delineation was not

used in the algorithm, no fibers are going through the tumor area on patient 1.

Instead, the CST is going through the most central part of the edema (see images

(b,c) on Fig. 2). This indicates that the fibers were pushed by the tumor mass

effect, which is a valuable indication when planning the surgery. Overall, this

figure demonstrates the close proximity of the tumors and of the CST for both

patients. This is an important insight as the neurosurgeon will be able to plan

the tumor removal in the optimal way, so as to minimize the possible handicap

for the patient after surgery.
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Abstract. Providing neurosurgeons with visualization-based guidance

has a great potential to improve surgical outcomes. We present here a

pipeline for extraction of the cortico-spinal tract using automated atlas-

based seeding with a single-subject atlas. Our protocol uses the Colin27

single-subject atlas along with fast non-rigid brain registration to au-

tomatically generate label-based seeds for tractography. The pre and

post-central gyri labels from the atlas were used as seeds. A manually

delienated cerebral peduncle label as well as other Colin27 labels were

used, in ROI based selection and removal of fibres, to eliminate false-

positive tracks. A set of tractography parameters were chosen in order

to reliabily generate the nerve fibres. In only less than 10% of the cases,

the chosen parameters were not sufficient for prevention of false-positive

tracts and were optimized. Our method is an automated labelmap seed-

ing with multi ROI filters that averts inter and intra subject variability,

thus offering a high reproducibility in generating accurate cortico-spinal

tracts.

1 Introduction

Tractography using Diffusion Tensor Imaging (DTI) has the potential to signif-

icantly impact neurosurgical procedures. Operations involving the resection of

tissue or tumour can damage eloquent areas within the brain. Thus, providing

the neurosurgeon with visualization-based guidance and possibly tracking can

improve surgical outcomes.

Many tractography approaches have been based on brute force (streamlines

from every voxel) with user-defined seeds or regions of interest (ROIs) and prun-

ing of fiber bundles [1–3], which can suffer from rater reliability issues. Auto-

mated labelling techniques based on brain registration have the advantage of

generated a full set of brain labels for automated seed selection by warping la-

bels from an atlas. Our submission uses a labelled atlas along with fast non-rigid

brain registration to automatically generate label-based seeds for tractography

in order to segment the cortico-spinal tract.



II

2 Methods

2.1 Imaging

MRI datasets were provided by the workshop organizers and were obtained from
the Department of Neurosurgery at Brigham and Women’s Hospital, Boston,
MA, with repeat control scans from the Scientific Computing and Imaging Insti-
tute, Salt Lake City, Utah. Each set contained diffusion weighted images (DWI)
(25 directions plus the baseline), Diffusion Tensor Images (DTI), and registered
T1/T2-weighted anatomical images. Our processing pipeline began with the DTI
images and made use of the T1 anatomical images for atlas registration.

2.2 Atlas-based labelling

The Colin27 single-subject atlas [4] was used for atlas-based labelling of seed
regions in each subject. The freely available Freesurfer Image Analysis Suite
http://surfer.nmr.mgh.harvard.edu/fswiki/ was used for automated labelling of
the atlas, generating subcortical segmentations [5] and voxelized cortical parcel-
lations [6]. In addition, the cerebral peduncles were manually segmented in the
atlas MRI.

2.3 Atlas registration

The Colin27 atlas was registered to each individual subject scan using a two
stage rigid/affine to non-rigid registration procedure as implemented in the freely
available Nifty Reg http://sourceforge.net/projects/niftyreg toolkit.

The rigid/affine registration algorithm uses a block-matching approach, that
relies on trimmed least squares for robustness to outliers [7]. In this scheme
the block matching first provides a set of corresponding points, which are then
used to find the best global rigid/affine transformation between the images us-
ing a normalized cross-correlation image similarity metric. These two steps are
repeated until convergence by a multi-resolution scheme.

The non-rigid algorithm [8] is a GPU-enabled implementation based on the
free-form deformation B-spline algorithm by Rueckert et al. [9]. A normalized
mutual information image similarity metric is used along with a bending energy
for regularization. The lattice of control points is successively increased for a
multi-resolution approach.

Following generation of the non-rigid deformation field, the automated and
manual labels in the Colin27 atlas were propagated to the subject space using
nearest-neighbour interpolation. The labels for precentral and postcentral gyri
were dilated once to ensure overlap with the cortical white-matter tissue. Figure
1 shows the Colin27 atlas and the labels in the healthy subject 1 space.
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(a) Colin27 MRI (b) Colin27 Freesurfer (c) hs1 Labelled

Fig. 1: Visualizations of (a) Colin27 atlas MRI, (b) Freesurfer labels, and (c)

a healthy subject with atlas-based labels (pre and post-central gyri, cerebral

peduncles, and cerebellum), used for seeding and selecting tracts.

2.4 Tractography

Tractography was performed in the open source software 3D Slicer, version 3.6.3

(http://www.slicer.org[10]) using the Labelmap Seeding and ROI Select modules

to generate the cortico-spinal tract fibre bundles. The procedure for extracting

the corticospinal tract in a given hemisphere consisted of 1) labelmap seeding

using the combined and dilated precentral and postcentral labels (parameters

in Table 1), 2) ROI-based selection of the generated tracts that run through

the cerebral peduncle label, and 3) ROI-based removal of the tracts that run

through the cerebellum and white matter from the opposite hemisphere. In less

than 10% of the cases the chosen parameters were not sufficient for prevention

of false-positive tracts and thus the minimum length or curvature were increased

in these cases. The image-based envelope of the tracts were generated using the

ModelIntoLabelVolume module.

Parameter Value
Seed spacing 0.8 mm
Linear Measure Start Threshold 0.3
Minimum Tract Length 100 mm
Maximum Tract Length 200 mm
FA Stop Threshold 0.1
Curvature Stop Threshold 0.85
Integration Step Length 0.5 mm

Table 1: Parameters used for label-based tract seeding in Slicer3.

Patient tumour and tractography visualizations, shown in Figure 2, were

generated using models of the tumours (Patient1 models were provided by the
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workshop organizers), a skull-stripped volume as well as a cortical surface visu-

alization of the brain. Skull-stripped was performed using the Brain Extraction

Tool (BET) in FSL (http://www.fmrib.ox.ac.uk/fsl/ [11])and the cortical sur-

face was acquired from the Freesurfer Image Analysis Suite. The total processing

time for each neurosurgical case was under 10 min, which includes the time taken

for atlas based segmentation of ROIs, seeding the tracts, ROI based selection

and removal of fibers, as well as time for generating the tumour models [it should

noted that this time does not include manually delineating the tumours for label

creation].

Fig. 2: Visualization of patient1 tractography with tumours and edema present

for neurosurgical guidance (Top: Patient1, Bottom: Patient2)

3 Appendix: Evaluation criteria

Quantitative reference-based similarity measures for tractography are ideal for

evaluating methodologies, however, this is inherently dependent on the existience

of an accurate and reliable reference. Gold standard tractography is elusive be-

cause of the noise present in the DWI images, the and the deterministic nature

of streamline-based tractography methods that may falsely capture the noise.

Furthermore, applying tractography without functional evidence may produce

tracts which look anatomically meaningful but are not functionally accurate.

To deal with the problem of noisy data, one can apply a co-registration and

averaging approach to fuse multiple DWI acquisitions into a single high SNR

DWI dataset. The healthy subject datasets used in this workshop could be used
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to produce such as dataset, which would correspondingly produce a more robust

estimate of the diffusion tensors.

Secondly, to ensure spatially accurate seeding, blood-oxygen level dependent

(BOLD) fMRI could be used to map, for example, the motor cortex by using

a button-press paradigm. The combined reduction of noise and improvement in

localization of seed points should result in an in-vivo reference tractography that

approaches gold-standard.
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Abstract. In the DTI Tractography Challenge MICCAI 2011 different
tractography algorithms compete in tracking the corticospinal tract. In

this paper we present an implementation of the global tractography al-

gorithm proposed by Reisert et.al. [1] using the open source Medical

Imaging Interaction Toolkit (MITK) developed and maintained by the

Division of Medical and Biological Informatics at the German Cancer

Research Center (DKFZ). The MITK diffusion imaging application com-

bines all the steps necessary for a successful tractography: preprocessing,

reconstruction of the images, the actual tracking, live monitoring of in-

termediate results, postprocessing and visualization of the final tracking

results.

Keywords: Global Tracking, Neuronal Tractography, Diffusion-weighted
Imaging, Q-Ball Imaging, Diffusion Tensor Imaging

1 Introduction

Up to now, diffusion weighted imaging (DWI) is the only technique to noninva-

sively gain insight into the architecture of the human white matter pathways.

Tractography algorithms try to explicitly estimate the underlying fiber pathways

from the given voxelwise information.

There exists a wide variety of different tractography algorithms that can be

roughly divided into the two subgroups of local and global methods. Local meth-

ods try to reconstruct one fiber at a time by following the voxelwise information

and successively adding segments to the fiber. Fibers can either be generated fol-

lowing a model-based or a model-free approach. While local methods are known

to be performant, they often struggle with image artifacts or complex fiber con-

figurations like crossings or kissings. Global methods try to reconstruct all fibers

simultaneously, searching for a global optimum. While computationally much

�
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2 MITK Global Tractography

more challenging, global methods promise more robust results.

This work presents the integration of the successful [2] and also computation-

ally efficient global approach proposed by Reisert et.al. [1] within the Medical

Imaging Interaction Toolkit (MITK) developed at the German Cancer Research

Center (DKFZ) and its application to reconstruct the corticospinal tract. MITK

is a free open-source software system for development of interactive medical im-

age processing software [3]. The diffusion imaging application is available on

www.mitk.org and we are in the process of publishing it open source. This pa-

per describes the processing pipeline that was applied to the datasets provided

by the organizers of the DTI Tractography Challenge MICCAI 2011 to obtain

tractography results of the corticospinal tract (CST).

2 Materials and Methods

Three steps were performed in order to obtain the desired reconstruction of the

CST. The first step includes preprocessing and generation of additional informa-

tion like mask images. The second step consists of the actual tractography and

the third step describes the extraction of the corticospinal tract from the whole

brain tracking result. The process is illustrated in Fig. 1.

Fig. 1. Flowchart of the processing steps from DWI images to the extracted CST.

2.1 DWI Processing Pipeline

Depending on the type of acquisition, different reconstruction methods for the

DWI can be chosen. Our tractography algorithm expects ODFs as input data.
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If the DWI is already captured using a high angular resolution diffusion imaging
(HARDI) sequence, the Q-Ball reconstruction can be performed directly. Oth-
erwise a standard tensor reconstruction is applied and a new DWI image with
high angular resolution is estimated from the tensor image. The resulting DWI
image can then be processed via Q-Ball reconstruction.
In this work, the supplied DTI datasets were used directly instead of a recon-
struction of the tensor data from the provided DWI datasets. There are several
different Q-Ball reconstruction methods available in MITK like a numerical re-
construction (Tuch et.al. [4]) or a spherical harmonics reconstruction with solid
angle consideration (Aganj et.al. [5]). In this work we used a basic spherical har-
monics reconstruction as proposed by Descoteaux et.al. [6]. The applied tracking
approach does not need a mask image to yield accurate tracking results, but by
limiting the search space with a binary brain mask, the process can be accel-
erated considerably. The mask image was generated by a simple thresholding
of the GFA image generated from the reconstructed Q-Ball image. The thus
produced Q-Ball and mask images are used as input for the tracking algorithm.

2.2 Global Tractography

The basic idea of the global tractography algorithm [1] is to fit a model M ,
consisting of directed points (particles) and connections between the particles,
to the image data D by minimizing two energy terms.
The first energy, the so called external energy Eext, measures the distance from
the artificial signal ρM computed from the current model configuration to the
original image data, i.e. the external energy ensures that M is able to explain
the signal in the best possible way. The external energy is computed as

Eext(M,D) = λext||ρM −D||2L2(R3×S2), (1)

where λext is a weighting factor controlling the balance between external and
internal energy.

The second energy, the internal energy Eint, applies certain constraints to
the model itself. It is designed to enforce long and straight fibers. By minimizing
Eint the model is shaped in a way that is consistent with structural knowledge
about neuronal fibers. Each particle can connect to another particle with one of
its endpoints. A chain of connected particles represents a fiber. The connection
potential between two particles is small if the endpoints of two connected parti-
cles lie close together and point in the same direction.
To optimize the model, the whole problem is formulated as a maximization of
the a-posteriori probability of the model M given the image data D:

P (M |D) = exp(−Eint(M)/T − Eext(M,D)/T ), (2)

P (M |D) is maximized via the introduction of random change proposals with
a certain probability pprop into the model M . The resulting model configuration
M � is afterwards accepted or rejected according to a certain ratio calculated from
P (M �|D) and P (M |D). By successively reducing the temperature T it becomes
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4 MITK Global Tractography

more and more likely to converge to a steady and optimal configuration of the

model. For more details regarding the algorithm, please refer to [1].

To increase the number of detected fibers and to account for the statistical nature

of the process, each image was tracked four times with 108 iterations for each

image and the results were combined afterwards.

2.3 Extraction of the Corticospinal Tract

The tractography approach described in the previous subsection yields a whole

brain tracking result. To extract the CST from the whole brain result seven

ROIs were placed manually. The first ROI (R1) is placed in a tranversal slice

on the brain stem at about the height of the Pons, while catching both strands

of the corticospinal tract and avoiding the Superior Cerebellar Peduncle and

the Medial Lemniskus. The second and third ROI (R2, R3) are placed on the

posterior limb in the internal capsule of the respective hemisphere to catch the

fibers spreading out to form the Corona Radiata. The fourth ROI (R4) is placed

sagittally between the two hemisphere to catch and erase fibers crossing the

Corpus Callosum. The three ROIs R5−R7 are placed left, right and behind the

lower part of the CST to erase the remaining fibers of the Superior Cerebellar

Peduncle and the Medial Lemniskus. The ROIs were placed similarly for all 22

images. A schematic ROI placement of R1 − R6 is depicted in Fig. 2 (R7 was

omitted in this figure due to clarity issues). The ROIs are combined via logical

operations to extract or avoid fibers respectively in the following manner:

R = R1 ∧ (R2 ∨R3) ∧ ¬(R4 ∨R5 ∨R6 ∨R7) (3)

All fibers that do not pass through the composite ROI R are removed.

3 Results

The method described in chapter 2 was applied to all provided 22 diffusion tensor

images obtained from four different probands. Ten images each were obtained

from two healthy subjects and one image from two surgical cases respectively.

In all images the corticospinal tract was detected successfully. Figure 3 shows

the sagittal and coronal tracking results of all 22 images. Fig. 4 shows the whole

brain tracking result of the patient 1 dataset as well as the according extracted

CST and ROIs used for the extraction in four different views.

4 Discussion and Conclusion

In this paper we presented tracking results of the CST using MITK global trac-

tography. The CST was successfully tracked in the diffusion weighted images

supplied by the Organizers of the DTI Tractography Challenge MICCAI 2011.

Surprisingly some branches of the corona radiata of the CST were detected more

satisfying in the healthy subject datasets which are of much lower resolution
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Fig. 2. Schematic placement of the ROIs (green) used to extract the corticospinal tract

from the whole brain tracking (R7 omitted). Image adapted from [7]

and quality than the two neurosurgical datasets. A qualitative evaluation of the
according region lead to the conclusion that the image data of the two neuro-
surgical subjects in fact does not supply the information needed to reconstruct
the according fiber tracts. The issue is illustrated in Fig. 5.
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6 MITK Global Tractography

Fig. 3. (a) CST tracking of healthy subject 1 (coronal view) (b) CST tracking of
healthy subject 2 (coronal view) (c) CST tracking of healthy subject 1 (sagittal view)
(d) CST tracking of healthy subject 2 (sagittal view) (e) CST tracking of patient 1
(coronal and sagittal view) (f) CST tracking of patient 2 (coronal and sagittal view).
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(a) Transversal (b) Sagittal (c) Coronal (d) Perspective

(e) Transversal (f) Sagittal (g) Coronal (h) Perspective

Fig. 4. a-d: Whole brain tractography result of the patient 1 dataset. e-h: CST tracts
including ROIs used for the extraction (negative ROIs omitted).

(a) HS1 DTI and ROI (b) HS1 Tensor Visual-
ization

(c) HS1 3D Tractography

(d) PAT1 DTI and ROI (e) PAT1 Tensor Visual-
ization

(f) PAT1 3D Tractogra-
phy

Fig. 5. Comparison between healthy subject 1 (upper row) and patient 1 (lower row)
in the branching regions of the corona radiata. The left column (image (a) and (d))
show the coronal view of both images with a ROI marked as white rectangle. Image (b)
and (e) depict the tensor visualization of the according ROI and the rightmost column
(image (c) and (f)) shows the respective 3D visualization of the tracking result. The
neurosurgical dataset does not seem to supply the information needed for a successful
tracking of the branching.



Using Filtered Multitensor Tractography
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Abstract. This paper describes the pipeline that was applied to the

data in the tractography grand challenge. It included 1) preprocessing

of the data 2) seeding of the regions 3) applying the filtered two-tensor

tractography method and 4) cleaning up of the fiber tracts manually in

Slicer3
1
. Each step was demonstrated with screen shots and a full list

of parameters applied.

1 Introduction

This paper describes the pipeline used in the submission for MICCAI 2011 trac-
tography grand challenge. Four major steps were performed in this pipeline
including 1) Pre-processing of the data 2) Manual selection of the seeding re-
gion for tracking 3) Tracking with filtered multitensor tractography method 4)
Manual cleaning of the tracts in Slicer3. The tracking method applied was devel-
oped based on previous developed filtered multitensor algorithm [1]. Two-tensor
tractography method was chosen fo tracing the cortical-spinal tract as this tract
connects the spianl cord and different cortical regions and has a lot of fanning
and diverging fibers in nature which is always a challege for single-tensor based
tractography methods. This method, however is sensitive to noise as is seen in
the results.

2 Pipieline Description

2.1 Pre-processing

Two sets of patient data and two sets of healthy control data were pro-
vided for this tractography grand challenge. The two dataset for patient1
and patient2 were not pre-processed. The original dwi data was taken as
the input to perform the tractography. 10 dwi dataset for either healthy
control was included. In order to eliminate any bias in manual seeding
region selection, each of the 10 dataset was co-registered. First, one set
(template) was chosen in each of the 10 healthy control dataset randomly.
Then, fractional anisotropy (FA) maps of the other nine dataset was regis-
tered to that of this chosen dataset using rigid body registration. Register-
Images (http://www.slicer.org/slicerWiki/index.php/Modules:RegisterImages-
Documentation-3.6) was used using normalized correlation between images and
center of mass option was chosen as the initialization step for registration.

1
www.slicer.org



2.2 Manual selection of the seed regions

Fig. 1. Manually selected seed regions in the patient data and one of the 10
healthy control dataset shown on color FA maps.

Bi-laterally regions were selected at the cerebral peduncle, and the pons and
medulla regions as they are easy to identify in color FA maps. These regions were
selected on 3 or 4 axial slices with the size of 10 voxels in general as shown in .
Seed regions were manually selected in Slicer3 with the ”Editor” modual. These
regions were selected for both patient dataset and two of the template healthy
control dataset. The seed region map for the healthy control dataset were then



propogated to each of the 10 healthy control dataset with inverse transformation

as generated earlier.

2.3 Tracking with filtered multitensor tractography

Filtered multitensor tractography method was applied on all the dwi dataset in

their original space. White matter masks were generated with simple threshold-

ing of the FA maps. Step length of 0.5mm was used with 20 seeds per voxel in

the selected seed regions. No branching was allowed.

2.4 Manual cleaning of the tracts withe Slicer3

ROISelect modual in Slicer3 (http://www.slicer.org/slicerWiki/index.php/Modules:ROISelect-

Documentation-3.6) was used to manually clean the fiber tracts as the last step

as shown in figure 2 .
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Fig. 2. Tracking results after manual cleaning. One of each10 healthy control
(HS) dataset was chosen to represent the tracts.
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1 Description of the algorithm [1]

This is a global fiber-tracking algorithm: to compute each point in the tract,
not only the local diffusion information is considered, but instead we take into
account all the voxels in the volume (or the ROI considered). Concretely:

– Let us define a seeding point (region) xi and a target point (region) xf .
– Let us consider the set of all possible trajectories (fiber tracts estimated) Γ

starting at xi and ending at xf .
– The local directional cost φ(x,d) is defined for all voxels x within the

ROI, and for all possible unit directions d in the 3-D space.
– The Finsler distance between xi and xf is defined as (see Fig. 1):

D(xi,xf ) = min
Γ

� tf

ti

φ

�
Γ (t),

Γ �(t)
�Γ �(t)�

�
dt : xi = Γ (ti);xf = Γ (tf ). (1)

In other words: we sum φ(x,d) at each point x ∈ Γ corresponding to the direc-
tion d tangent to Γ at x. We need that the local cost depends on some property
related to the diffusion: for a voxel x, if the diffusivity along direction d is large,
then φ(x,d) should be small, i.e. the local directional cost is the inverse of the
local directional diffusivity. Instead of using a diffusion tensor, we use a more
general model based on Orientation Distribution Functions (ODF), which can
represent complex scenarios like fiber-crossings. These functions are not repre-
sented as an ellipsoid but as a more general parametric function expressed in the
basis of Spherical Harmonics (SH), see Fig. 1. Finally, to solve eq. (1) for Γ , the
Fast Sweeping algorithm is used. It provides, for each voxel x within the ROI:

– The Finsler distance D(xi,x), or costs map.
– The arrival directions map, i.e. the direction d tangent to Γ at x.

For a given target point xf , we only have to back-trace (integrate) the arrival
directions map from xf to xi to compute the fiber bundle joining xf and xi

1.

1
The code for the Fast Sweeping and the back-tracing is open-source and may be

downloaded from http://www.nitrc.org/scm/?group_id=464.
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Fig. 1. Illustration of the Finsler method. Left: The optimal curve Γ is that minimizing

the sum of φ(x,d); these local directional costs are defined at each x and for each

direction d (in the figure, the cost is the distance of the ellipsoid to its center). Right:
Comparison of DTI and ODF models for diffusion; the local costs are the inverse of

the diffusion functions. For a fiber-crossing, the cost for non-fiber directions is large.

2 Parameters of interest

The two main parameters to fix are:

– The sampling density of d. The higher this density, the smoother the fibers
and the more iterations the algorithm needs to converge. We use 60 orienta-
tions uniformly distributed in the sphere.

– The maximum degree of the SH (i.e. the precision) used to describe the ODF.
The number of gradients of the data sets imposes a limit of L = 4, which is
equivalent to using fourth order tensors.

3 Pros and cons

The algorithm has the following advantages:

– Compared to other global algorithms like stochastic tractography, this method
is deterministic. For the same input volume and same parameters, it will al-
ways provide the same solution, favoring the reproducibility of the results.

– Stochastic tractography/particle filtering/annealing require an enormous num-
ber of random samples to provide a reliable solution, being very slow. The
present algorithm may run in 90-300 seconds in a 2007’ laptop.

– Since the solution is deterministic, the convergence to the theoretically op-
timal solution is guaranteed.

– Compared to local algorithms, the use of global information makes this
method quite robust to noise and artifacts.

– This algorithm will always find a connection between the seeds and the
targets, even in the presence of very noisy data or extreme artifacts.

– It takes DWI and not DTI as input, so in principle it is not affected by the
limitations of the diffusion tensor model (e.g. fiber-crossings handling).

Its main drawbacks are:
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Fig. 2. Input HARDI-DWI volume with the ROI superimposed.

– It is still slow compared to standard methods like Runge-Kutta integration.
– Though it can work with regular DTI data, it is intended for HARDI-DWI,

which imposes severe constraints in the kind of studies it is suitable for.
– Since it always finds a connection between seeds and targets, it can

find unlikely/incorrect tracts if these regions are wrongly placed.
– The costs computed do not have an intuitive physical interpretation.
– The segmentation of both seed and target regions implies extra work.

4 Analysis pipeline

The input to the algorithm in all cases is the DWI volume provided. No further
filtering/eddy current correction has been done in any case.

1.- We compute a mask (ROI) to remove the background from the compu-
tations using 3D Slicer: i) A DTI volume is estimated from the DWI. ii) The FA
is computed. iii) The FA map is smoothed with a Gaussian filter with σ = 2. iv)
The map is thresholded. v) The mask obtained is manually edited if needed.

2.- The labels (seed and target regions) are manually segmented using 3D
Slicer by an untrained/inexperienced/impatient user. i) The seeds are placed in
3-5 axial slices in the cerebellar peduncle. ii) The targets are placed in several
coronal slices using a color-orientation image as a guidance; these slices are
chosen approximately in the same vertical as the seeding points, whenever the
cingulum is well visible and clearly following the anterior-posterior direction.

3.- i) The program to compute the costs and arrival directions maps is run
in each case. ii) The program to back-trace the arrival directions map from
the targets to the seeding region is run. No correction of the segmentations is
performed regardless of the results of this step.



4 Antonio Tristán-Vega, Demian Wassermann, Carl-Fredrik Westin

Fig. 3. Label map of seeding and target regions manually segmented.

Fig. 4. Module to compute the costs and arrival directions maps. The Finsler distance

will be computed from the region labeled “1” to the rest of the points in the ROI.

NOTE: For the healthy subjects, we have segmented (mask and label im-
ages) only the first scan. The maps are projected to the spaces of the remain-
ing scans using a home-made implementation of the demons registration algo-
rithm [2]. We use the T2-unweighted baselines of each DWI for reference.

5 Sample images

Figures 2 through 6 present a simple case illustrating the whole processing
pipeline for the Finsler fiber-tracking method.
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Fig. 5. Example of costs map. The cost is minimum (zero) in the region labeled “1”,
since there is no cost to reach this region from itself. For the rest of the volume, regions
in the white matter are more easily reached than the others, since they are connected
to the seeding region through fiber tracts. In particular, the cost in the region labeled
“2” is rather low, and the fiber tracts will be traced back from it to the seeding region.

Fig. 6. Reconstruction of the corticospinal tract using the back-tracing module.
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1 Introduction

This report presents our volumetric segmentation approach to determine the
white matter connectivity, specifically in the corticospinal tract. The complete
analysis is based on the work by Fletcher et al [1], which uses a Hamilton-Jacobi
(H-J) formulation and a fast iterative method to minimize the total path cost
between two seed regions. The total cost is defined as the integral of local costs
obtained from the tensor information along the path. This leads to a region-to-
region connectivity providing a volumetric representation of the white matter
pathway between two regions.

2 DTI analysis pipeline

Once the seed regions are defined that represent two target regions of the vol-
umetric pathway, the local cost is calculated at each point on the image using
its tensor information. This is followed by a nonlinear partial differential equa-
tion which computes minimal cost from the first target region to every point in
the image. Similarly, the minimal cost is computed from a second target region.
The two solutions are then combined in order to produce a minimum cost path
between the two regions.

As [1] quotes, given a path c : [a, b] → Ω, where Ω is an image domain, the
total cost of c is defined as

E(c) =

� b

a
ψ(c(t), T (t))dt, (1)

where T (t) = c�(t)
�c�(t)� is the unit tangent vector of c. The local cost function,

ψ(x, v) gives the cost of moving in the unit direction v from point x. Following
[2], a quadratic local cost function is used which is defined as

ψ(x, v) = vTM−1(x)v, (2)
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where M(x) is a symmetric, positive-definite matrix defined at each point x ∈ Ω.
Instead of directly choosing the tensors in place of M , they are sharpened

by raising it to a power α so that the solution tends to follow the white mat-
ter pathway rather than the shortest path in the Euclidean sense. Now, if the
sharpened tensor is considered to be the speed (in the H-J formulation), which
gives low cost along the principal eigen directions, the cost is the inverse. Thus
we have

M(x) = |D(x)| 13 ( D(x)

|D(x)
1
3 |
)α, (3)

where α > 1 and |D(x)| denotes the determinant of D(x). Let γ be the
optimal path obtained using H-J formulation and � be the tolerance of paths
relative to the optimum. A set of all points whose constrained minimum cost is
less than (1+ �)E(γ) is defined as a volumetric pathway between the two target
regions. Thus the segmented voxels describe the fiber connection between them.

To solve numerically the H-J equation, the Fast Iterative Method [3] is used
due to its speed. As our analysis is mainly concerned with the white matter
connectivity, a white matter mask is generated to solve for the cost function.
For numerical accuracy, the solution on the grid is supersampled by two from
the original data.

3 Results

The DTI volumetric segmentation framework has been applied to two healthy
and two neurosurgical cases. The analysis was carried out to segment the left
and the right corticospinal tracts in datasets. Using the color-coded orientation
map that can be calculated using the tensor volume, we outlined the terminal
regions manually for these tracks. A DTI atlas by Mori [4] has been used as a
guideline to define these seed regions on our colored orientation maps.

Figure 1 illustrates one example of seed regions on a healthy subject. Figure
2 illustrates results that depict the segmented corticospinal tracts on a healthy
and neurosurgical case. According to the figure, these segmented regions are
overlayed on T-1 weighted MR images as well as colored Eigenvector images. An
α value of 3 and an � value of 0.06 are chosen for all cases.
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Fig. 1: White regions indicate seeds defined for Corticospinal tract on a healthy
case

(a) Neurosurgical View1 (b) Neurosurgical View2

(c) Neurosurgical View1 (d) Neurosurgical View2

Fig. 2: (a) DTI volumetric segmentation results on a healthy subject T1-weighted
image; (b) DTI volumetric segmentation results on colored eigen-vector image;
(c) DTI volumetric segmentation results on a patient T1-weighted image; (d)
DTI volumetric segmentation results on colored eigen-vector image




